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Continuity 



Let f be a real function on a subset of the real 
numbers and let c be a point in the domain of f. 
Then f is continuous at c if

If f is not continuous at c ⇒ f is discontinuous at c 
and c is called a point of discontinuity of f.
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Continuity 



Example: y = f(x)
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Continuity 



Example: y = f(x)
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Continuity 

Not Continuous

Not Continuous

Not 
Continuous

Continuous
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Continuity 
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Continuity 
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Continuity - Plots 
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Example
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Example

Given 
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Example
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12M05.1 - Continuity 

Equal

a = 0

Equal

b = –15
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Example
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Example



Suppose f and g be two real functions continuous at a real number x = c, then 

Functions f + g, f – g, f・g, are continuous at x = c. 

If f and g are two functions, then (fog)(x) = f(g(x)).

1. If (fog) is defined at x = c.

1. If g is continuous at x = c.

1. If f is continuous at x = g(c)

f
g
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Results

(fog) is continuous at x = c

g(c) ≠ 0
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Example
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12M05.1 - Continuity 

Two Methods 

Algebra of 
continuous 
Functions 

Normal 
Method

f(x) = p(x) ± q(x)
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12M05.1 - Continuity 



Question: Show that the function f is defined by f(x) = |1 – x + |x||, where x is any real
number, is continuous function.
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Question: Show that the function f is defined by f(x) = |1 – x + |x||, where x is any real
number, is continuous function.

Solution: Let g(x) = 1 – x + |x|
and h(x) = |x|

f(x) = h(g(x)) = hog(x)
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g(x) = 1

g(x) = 1 – 2x
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Summary

1. Continuity of Function at point x = c

1. Geometrical Meaning of Continuity.

No Break or Jump Continuous Function
In Graph

Any Break or Jump Discontinuous

Function



Example:
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Differentiability and Derivatives of Composite Functions

Example: y = f(x)



Example:
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Differentiability and Derivatives of Composite Functions

Example: y = f(x)

Left Hand Derivative
(LHD)

Right Hand Derivative
(RHD)
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Differentiability and Derivatives of Composite Functions
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Differentiability and Derivatives of Composite Functions



Example



Example
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Differentiability and Derivatives of Composite Functions

=

A function f(x) is differentiable in(a, b) [a, b]

f(x) is differentiable 
∀ x ∈ (a, b).

● f(x) is differentiable ∀ x ∈ (a, b).
● f(x) is differentiable at the end points a

and b, i.e., 

and 

exist finitely.
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Differentiability and Derivatives of Composite Functions
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Differentiability and Derivatives of Composite Functions
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Differentiability and Derivatives of Composite Functions
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12M05.2 - Differentiability and Derivatives of Composite Functions

= – 1 =  1

LHD ≠ RHD
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Points to Remember

If a function is 

Differentiable → Definitely Continuous 

Continuous → Not Necessarily Differentiable

Discontinuous → Definitely Not Differentiable
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A B C

Chain Rule
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Differentiability and Derivatives of Composite Functions

Example:
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Differentiability and Derivatives of Composite Functions

Example:

x ➝ cos 2x 

x ➝ 2x ➝ cos 2x 

Let 2x = 
t

– sin 2x
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Differentiability and Derivatives of Composite Functions
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Differentiability and Derivatives of Composite Functions

Substituting 
the value of u 
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Differentiability and Derivatives of Composite Functions
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Differentiability and Derivatives of Composite Functions
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Differentiability and Derivatives of Composite Functions
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Differentiability and Derivatives of Composite Functions



Differentiability of Standard Functions

All of the standard functions are differentiable except at certain points, as follows:

1. Polynomial functions are differentiable in its domain(R).

1. A rational function           is differentiable except where q(x) = 0, where the 

function grows to infinity.

E.g.      and      both functions are not differentiable at x = 0.

1. Sines, cosines and exponents are differentiable everywhere

Tangents and secants are not differentiable at values where they are not defined, 
i.e.,

Cotangents and cosecants are not differentiable at values where they are not 
defined, i.e.,
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Summary

p(x)

q(x)

1
x

1
x2
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Summary
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Derivatives of Inverse Trigonometric Functions
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Summary
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Summary

If the given expression is implicit function
1. Directly differentiate with respect to x
2. Separate like and unlike terms
3. Solve for dy/dx

Derivatives of Inverse Trigonometric Function



Second Order Derivative and Mean Value Theorem

y = f(x)

or y1 or y' or f'(x)
dy

dx

or y2 or y" or f"(x)

1st Order Derivative

2nd Order Derivative
d2y

dx2

Diff. w.r.t x

Again Diff. w.r.t x
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Second Order Derivative and Mean Value Theorem
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Second Order Derivative and Mean Value Theorem

Diff. w.r.t x

Again diff. w.r.t x

Simplification

Product Rule



Second Order Derivative and Mean Value Theorem



Second Order Derivative and Mean Value Theorem

Diff. w.r.t x

Chain Rule

Diff. w.r.t x



Second Order Derivative and Mean Value Theorem



Second Order Derivative and Mean Value Theorem

Diff. w.r.t x

Simplification

Chain Rule

Chain Rule

Diff. w.r.t x





Diff. w.r.t x

Taking Logarithm

Diff. w.r.t x



Second Order Derivative and Mean Value Theorem

Mean Value Theorem

Rolle’s Theorem Lagrange’s MVT

f : [a, b] → R



Second Order Derivative and Mean Value Theorem

Mean Value Theorem

Rolle’s Theorem Lagrange’s MVT

f : [a, b] → R

f is continuous on [a, b] 

f is differentiable on (a, b)



Second Order Derivative and Mean Value Theorem

Mean Value Theorem

Rolle’s Theorem Lagrange’s MVT

f : [a, b] → R

f is continuous on [a, b] 

f is differentiable on (a, b)

If f(a) = f(b), then
c ∈ (a, b)
f'(c) = 0



Second Order Derivative and Mean Value Theorem

Mean Value Theorem

Rolle’s Theorem Lagrange’s MVT

f : [a, b] → R

f is continuous on [a, b] 

f is differentiable on (a, b)

If f(a) = f(b), then
c ∈ (a, b)
f'(c) = 0

c ∈ (a, b)

f'(c) =
f(b) – f(a)

b – a



Second Order Derivative and Mean Value Theorem

Mean Value Theorem

Rolle’s Theorem Lagrange’s MVT

f : [a, b] → R

f is continuous on [a, b] 

f is differentiable on (a, b)

If f(a) = f(b), then
c ∈ (a, b)
f'(c) = 0

c ∈ (a, b)

f'(c) =
f(b) – f(a)

b – a



Second Order Derivative and Mean Value Theorem

Example: Verify Rolle’s theorem for the function f(x) = x2 + 2x – 8, x ∈ [–4, 2].



Example: Verify Rolle’s theorem for the function f(x) = x2 + 2x – 8, x ∈ [–4, 2].

Solution: f(–4) = (–4)2 + 2(–4) – 8 = 0

f(2) = (2)2 + 2(2) – 8 = 0

∵ f(-4) = f(2) = 0 

∴ From Rolle’s Theorem 

c ∈ (–4, 2) such that f'(c) = 0

∵ f(x) = x2 + 2x – 8

∴ f'(x) = 2x + 2 

∴ f'(c) = 2c + 2 = 0 

⇒ c = –1 ∈ (–4, 2)

Second Order Derivative and Mean Value Theorem

Polynomial Function

Continuous on [–4, 2] 

Differentiable on (–4, 2)



Question: If f : [–5, 5] → R is a differentiable function and f'(x) does not vanish 

anywhere, then prove that f(5) ≠ f(–5) .

Second Order Derivative and Mean Value Theorem



Question: If f : [–5, 5] → R is a differentiable function and f'(x) does not vanish 

anywhere, then prove that f(5) ≠ f(–5) .

Solution: By Mean Value Theorem 

c ∈ (–5, 5) such that     

⇒ 10f'(c) = f(5) – f(–5)

∴ 10f'(c) ≠ 0 

⇒ f(5) – f(–5) ≠ 0

⇒ f(5) ≠ f(–5)

Second Order Derivative and Mean Value Theorem

Continuous on [–5, 5] 

Differentiable on (–5, 5)

f'(c) ≠ 0

f'(c) =
f(5) – f(–5)

5 – (–5)



Question: Verify Mean Value Theorem, if f(x) = x3 – 5x2 – 3x in the interval [a, b], where 

a = 1 and b = 3. Find all c ∈ (1, 3) for which f'(c) = 0.

Second Order Derivative and Mean Value Theorem



Question: Verify Mean Value Theorem, if f(x) = x3 – 5x2 – 3x in the interval [a, b], where 

a = 1 and b = 3. Find all c ∈ (1, 3) for which f'(c) = 0.

Solution:  f(1) = (1)3 – 5(1)2 – 3(1) = – 7

f(3) = (3)3 – 5(3)2 – 3(3) = 27  

From Mean Value Theorem c ∈ (1, 3)  such that

f'(c) = – 10 

⇒ 3c2 – 10c – 3 = – 10

⇒ 3c2 – 10c + 7 = 0

⇒ (c – 1)(3c – 7) = 0

⇒ c = 1, 7/3 

Second Order Derivative and Mean Value Theorem

f(b) – f(a)
=

f(5) – f(–5)
=

27 – (– 7)
= – 10

b – a 3 – 1 2

Polynomial Function

Continuous on [1, 3]

Differentiable on (1, 3)

c = 7/3 ∈ (1, 3) is the only point for which f'(c) = 0.

f(x) = x3 – 5x2 – 3x

⇒ f'(x) = 3x2 – 10x – 3

Factorisation
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Summary

Mean Value Theorem

Rolle’s Theorem Lagrange’s MVT

f : [a, b] → R

f is continuous on [a, b] 

f is differentiable on (a, b)

If f(a) = f(b), then
c ∈ (a, b)
f'(c) = 0

c ∈ (a, b)

f'(c) =
f(b) – f(a)

b – a

y = f(x) or y1 or y' or f'(x) or y2 or y" or f"(x)

1st Order Derivative 2nd Order Derivative

Diff. w.r.t x dy

dx

d2y

dx2

Diff. w.r.t x



𝐴 𝐵 𝐶

𝑑𝐵

𝑑𝐴

𝑑𝐶

𝑑𝐵

𝑑𝐶

𝑑𝐴

𝑑𝐶

𝑑𝐴
=

𝑑𝐶

𝑑𝐵
×

𝑑𝐵

𝑑𝐴

Chain Rule



𝑦 = 𝑓 𝑥

𝐗

𝐘

𝑥1

𝑓 𝑥1

𝑥2

𝑓 𝑥2

𝑓 𝑥1 = 𝑓(𝑥2)

Increasing 

If 𝑥1 < 𝑥2 ⇒ 𝑓 𝑥1 < 𝑓 𝑥2

IncreasingStrictly

If 𝑥1 < 𝑥2 ⇒ 𝑔 𝑥1 < 𝑔 𝑥2

𝑥1 𝑥2 𝐗

𝐘

𝑔 𝑥1

𝑔 𝑥2

𝑦 = 𝑔 𝑥



Ex. Show that the function given by 𝑓(𝑥) = 3𝑥 + 17 is strictly increasing on 𝑅. 

Sol. Let 𝑥1, 𝑥2 ∈ 𝑅

and 𝑥1 < 𝑥2

⇒ 3𝑥1 < 3𝑥2

⇒ 3𝑥1 + 17 < 3𝑥2 + 17 (Adding 17)

⇒ 𝑓 𝑥1 < 𝑓 𝑥2

∴ 𝑓 𝑥 is strictly increasing on 𝑅

𝒙𝟐

𝑓(𝑥) = 3𝑥 + 17

−2 4 6 8−4−6−8 2

5

10

15

−5

−10

𝐗

𝐘

𝒇(𝒙𝟏)

𝒙𝟏

𝒇(𝒙𝟐)

Multiply by 3 𝑥1 < 𝑥2

𝑓 𝑥1 < 𝑓 𝑥2



𝑦 = 𝑓 𝑥

𝑥1

𝑓 𝑥2

𝑥2

𝑓 𝑥1

𝑓 𝑥1 = 𝑓(𝑥2)

Decreasing

If 𝑥1 < 𝑥2 ⇒ 𝑓 𝑥1 > 𝑓 𝑥2

DecreasingStrictly

If 𝑥1 < 𝑥2 ⇒ 𝑔 𝑥1 > 𝑔 𝑥2

𝑥1 𝑥2 𝐗

𝐘

𝑔 𝑥2

𝑔 𝑥1 𝑦 = 𝑔 𝑥

𝐗

𝐘



Ex. Show that the function given by 𝑓 𝑥 = 7 − 𝑥 is strictly decreasing on 𝑅. 

Sol. Let 𝑥1, 𝑥2 ∈ 𝑅

and 𝑥1 < 𝑥2

⇒ −𝑥1 > −𝑥2

⇒ −𝑥1 + 7 > −𝑥2 + 7 (Adding 7)

⇒ 𝑓 𝑥1 > 𝑓 𝑥2

∴ 𝑓 𝑥 is strictly decreasing on 𝑅

𝒙𝟐

𝑓(𝑥) = 3𝑥 + 17

−2 4 6 8−4−6−8 2

5

10

15

−5

−10

𝐗

𝐘

𝒇(𝒙𝟏)

𝒙𝟏

𝒇(𝒙𝟐)

Multiply by −1 𝑥1 < 𝑥2

𝑓 𝑥1 > 𝑓 𝑥2



𝐗

𝐘

Neither Increasing nor Decreasing Functions

𝑥1 𝑥2

𝑓(𝑥1)

𝑓(𝑥2)

𝑥1 < 𝑥2

𝑓(𝑥1) < 𝑓(𝑥2)

𝑥1 𝑥2

𝑓(𝑥1)

𝑓(𝑥2)

𝑓(𝑥1) > 𝑓(𝑥2)
Neither Increasing nor 

Decreasing Function



Increasing 

Functions

Strictly 

Increasing 

Functions

Decreasing 

Functions 

Strictly 

Decreasing 

Functions

Neither 

Increasing nor 

Decreasing 

Functions 

𝑓 𝑥1 ≤ 𝑓(𝑥2) 𝑓 𝑥1 < 𝑓(𝑥2) 𝑓 𝑥1 ≥ 𝑓(𝑥2) 𝑓 𝑥1 > 𝑓(𝑥2)

X

Y 𝑦 = 𝑓(𝑥)

X

Y

𝑦 = 𝑓(𝑥)

𝑦 = 𝑓(𝑥)

X

Y
𝑦 = 𝑓(𝑥)

X

Y

𝑦 = 𝑓(𝑥)

X

Y



𝑥1 < 𝑥2

−2 4 6 8−4−6−8 2

5

10

15

−5

−10

𝐗

𝐘

𝒚 = 𝒇(𝒙)

Mean Value 

Theorem 𝑓′ 𝑐 =
𝑓 𝑥2 − 𝑓 𝑥1

𝑥2 − 𝑥1

𝑓 𝑥1 < 𝑓 𝑥2 ⇒ Increasing 

𝑓 𝑥1 > 𝑓 𝑥2 ⇒ Decreasing

Increasing ⇒ 𝑓′ 𝑐 > 0

Decreasing ⇒ 𝑓′ 𝑐 < 0

Constant ⇒ 𝑓′ 𝑐 = 0

𝑓 𝑥1 = 𝑓(𝑥2)

Constant

𝒙𝟏 𝒙𝟐

𝒇(𝒙𝟐)

𝒇(𝒙𝟏)

𝒄

Increasing ⇒ 𝑓′ 𝑥 ≥ 0

Decreasing ⇒ 𝑓′ 𝑥 ≤ 0

Constant ⇒ 𝑓′ 𝑥 = 0

Strictly Increasing ⇒ 𝑓′ 𝑥 > 0

Strictly Decreasing ⇒ 𝑓′ 𝑥 < 0

At a Point
In an Interval 



Example: Prove that the function given by 𝑓(𝑥) = 𝑥3 – 3𝑥2 + 3𝑥 – 100 is increasing 

in R. 

Solution:   𝑓 𝑥 Increasing  ⇒ 𝑓′ 𝑥 ≥ 0

𝑓′ 𝑥 = 3𝑥2 − 6𝑥 + 3

𝑓′ 𝑥 = 3(𝑥2 − 2𝑥 + 1)

𝑓′ 𝑥 = 3 𝑥 − 1 2 ≥ 0 ∀ 𝑥 ∈ 𝑅



Question: Show that 𝑦 = log 1 + 𝑥 −
2𝑥

2+𝑥
, 𝑥 > −1, is an increasing function on 𝑥

throughout its domain. 

Solution:   Increasing  ⇒
𝑑𝑦

𝑑𝑥
≥ 0

⇒
𝑑𝑦

𝑑𝑥
=

𝑥2

1+𝑥 2+𝑥 2

⇒
𝑑𝑦

𝑑𝑥
=

1

1+𝑥
−

2+𝑥 ×2 −2𝑥

2+𝑥 2

𝑑

𝑑𝑥
log 𝑥 =

1

𝑥

𝑑

𝑑𝑥

𝑢

𝑣
=

𝑣
𝑑𝑢

𝑑𝑥
− 𝑢

𝑑𝑣

𝑑𝑥

𝑣2

Taking LCM

⇒
𝑑𝑦

𝑑𝑥
=

1

1+𝑥
−

4

2+𝑥 2

⇒
𝑑𝑦

𝑑𝑥
=

2+𝑥 2− 4(1+𝑥)

1+𝑥 2+𝑥 2

≥ 0



Question: Prove that the function 𝑓 given by 𝑓(𝑥) = log sin 𝑥 is increasing on 0,
𝜋

2

and decreasing on 
𝜋

2
, 𝜋 .

Solution:   𝑓′ 𝑥 =
cos x

sin x
= cot x

𝑥 ∈ 0,
𝜋

2
𝑥 ∈

𝜋

2
, 𝜋

⇒ 1st Quadrant

⇒ cot 𝑥 > 0

⇒ 𝑓 𝑥 → Increasing

⇒ 2nd Quadrant

⇒ cot 𝑥 < 0

⇒ 𝑓 𝑥 → Decreasing



Question: Find the intervals in which function 𝑓 is given by

𝑓 𝑥 = 2𝑥3 − 3𝑥2 − 36𝑥 + 7 is –

A. Increasing B. Decreasing 

Solution:   𝑓′ 𝑥 = 6𝑥2 − 6𝑥 − 36

−2 3

+−+

−2 3

+−+



Question: for what value of 𝑎 function 𝑓 is given by 𝑓(𝑥) = 𝑥2 + 𝑎𝑥 + 1 is increasing

on 1, 2 .

Solution:   𝑓′ 𝑥 = 2𝑥 + 𝑎

𝑓′ 𝑥 > 0
⇒ 2𝑥 + 𝑎 ≥ 0
⇒ 𝑎 ≥ −2𝑥

−2

∵ 𝑎 ∈ [−2, ∞)

∵ 𝑥 ∈ 1,2
When 𝑥 = 1 ; 𝑎 ≥ −2

When 𝑥 = 2 ; 𝑎 ≥ −4
−2−4

𝑎

𝑎



Slope

Did You Know ?

Fixed Point

O
P

Tangent

Normal

Special Cases for Two Lines 

Equation of a Straight Line

𝑦 − 𝑦0 = 𝑚 𝑥 − 𝑥0

Perpendicular Parallel 

𝟗𝟎°

Slope = 𝑚1

Slope = 𝑚2

𝒎𝟏 × 𝒎𝟐 = −𝟏

Slope = 𝑚1

Slope = 𝑚2

𝒎𝟏 = 𝒎𝟐



𝑃

𝑥0

𝑦0

OX′

Y′

X

Y
𝑦 = 𝑓(𝑥)

𝑥0 + Δ𝑥

𝚫𝒙

𝑦0 + Δy

𝚫𝐲

𝑄 𝑥0 + Δ𝑥, 𝑦0 + Δ𝑦

Slope of 𝑃𝑄 =
𝑦0 + Δ𝑦 − 𝑦0

(𝑥0 + Δ𝑥) − 𝑥0
=

Δ𝑦

Δ𝑥

lim
Δ𝑥→0

Δ𝑦

Δ𝑥
=

d𝑦

d𝑥

Slope 𝑚 =
d𝑦

d𝑥
𝑥0,𝑦0

⇒ Δ𝑥 → 0𝑄 → 𝑃

𝑦 − 𝑦0 = 𝑚 (𝑥 − 𝑥0)

𝑦 − 𝑦0 =
𝑑𝑦

𝑑𝑥
(𝑥0,𝑦0)

(𝑥 − 𝑥0)



Ex.    Find the equation of the tangent to the curve 𝑦 = 2𝑥2 − 1 at 𝑥 = 1.

Sol. 

d𝑦

d𝑥
1,1

= 4

𝑑𝑦

𝑑𝑥
= 4𝑥

𝑦0 = 2 1 2 − 1 = 1

𝑦 − 1 = 4 𝑥 − 1

𝑦 − 4𝑥 + 3 = 0

𝑦 − 𝑦0 =
𝑑𝑦

𝑑𝑥
(𝑥0,𝑦0)

(𝑥 − 𝑥0)



Q.    Find the point on the curve 𝑦 = 𝑥3 − 11𝑥 + 5 at which the tangent is 𝑦 = 𝑥 − 11?

𝐗

𝐘

𝑃 𝑥0, 𝑦0 𝑑𝑦

𝑑𝑥 (𝑥0,𝑦0)
= Slope of tangent

𝑑𝑦

𝑑𝑥
= 3𝑥2 − 11

𝑑𝑦

𝑑𝑥
(𝑥0,𝑦0)

= 3𝑥0
2 − 11

⇒ 3𝑥0
2 − 11 = 1

⇒ 3𝑥0
2 = 12 ⇒ 𝑥0

2 = 4

⇒ 𝑥0 = ±2𝑥0 = 2 𝑦0 = 2 3 − 11 2 + 5 = −9

𝑦0 = −2 3 − 11 −2 + 5 = 19𝑥 = −2 2, −9 −2,19



Q.      Find the point on the curve 𝑦 = 𝑥3 − 11𝑥 + 5 at which the tangent is 𝑦 = 𝑥 − 11?

Sol. 
𝑑𝑦

𝑑𝑥
= 3𝑥2 − 11 𝑚 = 1

𝑦 = 2 3 − 11 2 + 5 = −9

𝑑𝑦

𝑑𝑥
= 𝑚

⇒ 3𝑥2 − 11 = 1

⇒ 3𝑥2 = 12

⇒ 𝑥2 = 4

⇒ 𝑥 = ±2

𝑥 = 2

2, −9

𝑦 = −2 3 − 11 −2 + 5 = 19

𝑥 = −2

2,19

Only point 2, −9 satisfy the given tangent equation.



𝑃

OX′

Y′

X

Y

𝑥0

𝑦0

𝑦 = 𝑓(𝑥)
at point 𝑃 𝑥0, 𝑦0

𝑚𝑇 =
d𝑦

d𝑥
𝑥0,𝑦0

Tangent ⊥ Normal ⇒ 𝑚𝑇 × 𝑚𝑁 = −1

⇒ 𝑚𝑁 = −
1

𝑚𝑇

⇒ 𝑚𝑁 = −
1

𝑑𝑦
𝑑𝑥 (𝑥0,𝑦0)



Ex.    Find the slope of the normal to the curve 𝑦 = 𝑥3 − 3𝑥 + 2 at 𝑥 = 3.

Sol. 

Slope 𝑚𝑁

𝑑𝑦

𝑑𝑥
= 3𝑥2 − 3

= −
1

24

= −
1

𝑑𝑦
𝑑𝑥 𝑥0,𝑦0 𝑑𝑦

𝑑𝑥
𝑥=3

= 3 3 2 − 3 = 24



𝑃

OX′

Y′

X

Y

𝑥0

𝑦0

𝑦 = 𝑓(𝑥)
at point 𝑃 𝑥0, 𝑦0

𝑚𝑇 =
d𝑦

d𝑥
𝑥0,𝑦0

Tangent ⊥ Normal ⇒ 𝑚𝑇 × 𝑚𝑁 = −1

⇒ 𝑚𝑁 = −
1

𝑚𝑇

⇒ 𝑚𝑁 = −
1

𝑑𝑦
𝑑𝑥 (𝑥0,𝑦0)

𝑦 − 𝑦0 = −
1

𝑑𝑦
𝑑𝑥 (𝑥0,𝑦0)

(𝑥 − 𝑥0)



𝑃

OX′

Y′

X

Y

𝑥0

𝑦0

𝑦 = 𝑓(𝑥)
Point  𝑃 𝑥0, 𝑦0

𝑦 − 𝑦0 =
𝑑𝑦

𝑑𝑥
(𝑥0,𝑦0)

(𝑥 − 𝑥0)

𝑦 − 𝑦0 =
−1

𝑑𝑦
𝑑𝑥 (𝑥0,𝑦0)

(𝑥 − 𝑥0)

Equation of Tangent

Equation of Normal 

Slope of Normal

Slope of Tangent



𝑀𝑁 =
−1

𝑑𝑦
𝑑𝑥 (𝑥0,𝑦0)

Q. Find the equation of the normal to the curve 𝑦 = 𝑥3 + 2𝑥 + 6 which are parallel

to the line 𝑥 + 14𝑦 + 4 = 0.

𝐗

𝐘

𝑃 𝑥0, 𝑦0

𝑥 + 4𝑦 + 4 = 0

𝑦 − 𝑦0 = 𝑚𝑁 𝑥 − 𝑥0

𝑦 = −
1

14
𝑥 −

4

14



Q. Find the equation of the normal to the curve 𝑦 = 𝑥3 + 2𝑥 + 6 which are parallel

to the line 𝑥 + 14𝑦 + 4 = 0.

Sol. 

Equation of normal at point 2,18

Equation of normal 𝑑𝑦

𝑑𝑥
(𝑥0,𝑦0)

= 3𝑥0
2 + 2 = 𝑚𝑇

⇒ 𝑚𝑁 = −
1

3𝑥2 + 2

⇒ −
1

14
= −

1

3𝑥2 + 2

𝑚 = −
1

14

⇒ 3𝑥2 + 2 = 14 ⇒ 𝑥2 = 4

⇒ 𝑥 = ±2

𝒚 = 𝒙𝟑 + 𝟐𝒙 + 𝟔

𝑥 = 2 𝑦 = 23 + 2 2 + 6 = 18

𝑥 = −2 𝑦 = −2 3 + 2 −2 + 6 = −6

2,18

−2, −6

Equation of normal at point −2, −6

𝑦 − 18 = −
1

14
𝑥 − 2

⇒ 𝑥 + 14𝑦 = 254

𝑦 − −6 = −
1

14
𝑥 − −2

⇒ 𝑥 + 14𝑦 + 86 = 0

𝑦 − 𝑦0 = 𝑚𝑁 𝑥 − 𝑥0



Q. For the curve 𝑦 = 4𝑥3 − 2𝑥5, find all the points at which the tangent passes 
thought the origin.

Sol. 
𝑑𝑦

𝑑𝑥
(𝑥0,𝑦0)

= 12𝑥0
2 − 10𝑥0

4

12𝑥0
3 − 10𝑥0

5 = 4𝑥0
3 − 2𝑥0

5

⇒ 8𝑥0
5 − 8𝑥0

3 = 0

⇒ 8𝑥0
3 𝑥0

2 − 1 = 0

⇒ 𝑥0 = 0, ±1

𝑦0 = 4𝑥0
3 − 2𝑥0

5

𝑦0

𝑥0
= 12𝑥0

2 − 10𝑥0
4

𝑦0 = 12𝑥0
3 − 10𝑥0

5

𝐗

𝐘

(𝑥0, 𝑦0)

0,0

𝑥0 = −1 𝑦0 = 4 −1 3 − 2 −1 5 = −2

𝑥0 = 1 𝑦0 = 4 1 3 − 2 1 5 = 2

𝑥0 = 0 𝑦0 = 0

−𝟏, −𝟐

𝟏, 𝟐

𝟎, 𝟎



Q. Find the equations of the tangent and normal to the hyperbola
𝑥2

𝑎2 −
𝑦2

𝑏2 = 1 at the point 𝑥0, 𝑦0 .



Q. Find the equations of the tangent and normal to the hyperbola
𝑥2

𝑎2 −
𝑦2

𝑏2 = 1 at the point 𝑥0, 𝑦0 .

Sol. Equation of tangent at point 𝑥0, 𝑦0

𝑦 − 𝑦0 = 𝑚𝑇 𝑥 − 𝑥0

2𝑥

𝑎2 −
2𝑦

𝑏2 ×
𝑑𝑦

𝑑𝑥
= 0

⇒
𝑑𝑦

𝑑𝑥
=

𝑏2𝑥

𝑎2𝑦

Diff. w.r.t. 𝑥

Equation of normal at point 𝑥0, 𝑦0

𝑦 − 𝑦0 = 𝑚𝑁 𝑥 − 𝑥0

⇒ 𝑦 − 𝑦0 =
𝑏2𝑥0

𝑎2𝑦0
𝑥 − 𝑥0

⇒ 𝑎2𝑦𝑦0 − 𝑎2𝑦0
2 = 𝑏2𝑥𝑥0 − 𝑏2𝑥0

2

𝒎𝑻 𝒎𝑵 = −
𝟏

𝒎𝑻

𝑏2𝑥0

𝑎2𝑦0
−

𝑎2𝑦0

𝑏2𝑥0

⇒ 𝑏2𝑥𝑥0 − 𝑎2𝑦𝑦0 = 𝑏2𝑥0
2 − 𝑎2𝑦0

2

⇒
𝑥𝑥0

𝑎2 −
𝑦𝑦0

𝑏2 =
𝑥0

2

𝑎2 −
𝑦0

2

𝑏2

𝑥0
2

𝑎2 −
𝑦0

2

𝑏2 = 1

⇒
𝑥𝑥0

𝑎2 −
𝑦𝑦0

𝑏2 = 1

Dividing by a2b2

⇒ 𝑦 − 𝑦0 = −
𝑎2𝑦0

𝑏2𝑥0
𝑥 − 𝑥0 ⇒

𝑦 − 𝑦0

𝑎2𝑦0
= −

𝑥 − 𝑥0

𝑏2𝑥0
⇒

𝑦 − 𝑦0

𝑎2𝑦0
+

𝑥 − 𝑥0

𝑏2𝑥0
= 0
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