

25MT103: Linear Algebra

Module 2: Advanced Problems

Dr. D Bhanu Prakash

Course Page: dbhanuprakash233.github.io/LA

Assistant Professor,
Department of Mathematics and Statistics.
Contact: db_maths@vignan.ac.in.
dbhanuprakash233.github.io.

Module 2 - Advanced Problems

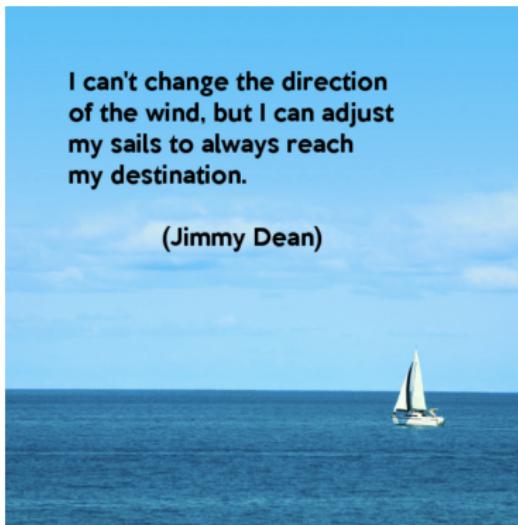
Advanced Questions

- Find all subspaces of \mathbb{R}^2 .
- Show that $\text{rank}(A) = \text{rank}(A^T)$ for any real matrix.
- If A and B are similar, i.e. $B = P^{-1}AP$, prove that $\text{rank}(A) = \text{rank}(B)$.
- Show that for any $A \in \mathbb{R}^{m \times n}$, $A^T A$ and AA^T have the same nonzero eigenvalues.
- Show that the projection matrix onto $\text{Col}(A)$ is $P = A(A^T A)^{-1}A^T$ when A has full column rank.
- Show that if $A = U\Sigma V^T$, then $\|A\|_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value.

Theoretical Exploration

- Show that the intersection of two subspaces is a subspace.
- Prove that any orthogonal set of nonzero vectors is linearly independent.
- Show that any two bases of a finite-dimensional vector space have the same number of elements.
- Prove the Cauchy–Schwarz inequality for vectors in \mathbb{R}^n .
- Explain geometrically how SVD represents a linear transformation.
- Prove that if A is invertible and $A = QR$, then $A^{-1} = R^{-1}Q^T$.
- Prove that the rank of A equals the number of nonzero singular values of A .
- For a matrix A , explain how the SVD generalizes diagonalization when A is not symmetric.
- Show that the determinant of a linear transformation matrix equals the product of its eigenvalues.
- Let A be symmetric. Prove that there exists an orthogonal matrix Q such that $A = Q\Lambda Q^T$.

Thank You!


Dr. D Bhanu Prakash

dbhanuprakash233.github.io

Mail: db_maths@vignan.ac.in

I can't change the direction
of the wind, but I can adjust
my sails to always reach
my destination.

(Jimmy Dean)

