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@ Matrix Decomposition
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Matrix Decomposition: Definition & Importance

Definition (Matrix Decomposition / Factorization)

Given a matrix A, a decomposition writes
A=AAy---Ap

where factors A; have a special structure (triangular, orthogonal, diagonal,
etc.).
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Matrix Decomposition: Definition & Importance

Definition (Matrix Decomposition / Factorization)

Given a matrix A, a decomposition writes
A=AAy--- Ay

where factors A; have a special structure (triangular, orthogonal, diagonal,
etc.).

\

Why to decompose A?
@ Turns a hard problem on A into easier problems on structured factors.
o Enables: solving linear systems, least squares, eigen-analysis,
compression, stability analysis.

@ Good decompositions give numerical stability, interpretability, and
computational efficiency.
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Common Decompositions

e LU: A = LU (Gaussian elimination)
@ Cholesky: A = LL'" for SPD matrices
@ QR: A = OR (least squares)

o Eigendecomposition: A = QAQ!
(square matrices)
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Common Decompositions

e LU: A = LU (Gaussian elimination)

) SVD (works for any m X n)
@ Cholesky: A = LL'" for SPD matrices

@ QR: A = QR (least squares) A=UzV'

o Eigendecomposition: A = QAQ!
(square matrices)

o Always exists
(real/complex)

@ Best low-rank
approximation
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@ Singular Value Decomposition: Algorithm
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Singular Value Decomposition

Singular Value Decomposition (Real case)

For any A € R™*" there exist orthogonal matrices (i.e., AT =A~")

U e R™™ V e R™"

and a diagonal (rectangular) matrix

diag(oy,...,0,) 0
mxn _ b 9
¥ e R™", 2_< J B

such that

A=UxV', o6, >0,>-->0,>0, r=rank(A).

o; are singular values; columns of U are left singular vectors; columns of V
are right singular vectors.
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Step-by-Step SVD Construction (Mathematical Procedure)

Given A € R™*":
@ Compute ATA € R,
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Step-by-Step SVD Construction (Mathematical Procedure)

Given A € R™*";
@ Compute ATA € R,
@ Solve eigenproblem: ATAv; = A;v; with 4; > - --
@ Set singular values: o; = \/A;, for A; > 0.
© Form V = [y --- v,] (orthogonal).
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Step-by-Step SVD Construction (Mathematical Procedure)

Given A € R™*";
@ Compute ATA € R,
@ Solve eigenproblem: ATAv; = A;v; with 4; > --- > A, > 0.
@ Set singular values: o; = \/A;, for A; > 0.
© Form V = [y --- v,] (orthogonal).
Vi
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i
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Step-by-Step SVD Construction (Mathematical Procedure)

Given A € R™*";
Compute ATA € R™",
Solve eigenproblem: ATAv; = Av; with 4} > --- > 4, > 0.
Set singular values: o; = v/4;, for 4; > 0.
Form V = [v; --- v,] (orthogonal).
Vi

A
For each o; > 0: define u; = =
i

© ©0 600COC

Complete {u;} to an orthonormal basis of R” (add vectors spanning
null(A1)).
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Step-by-Step SVD Construction (Mathematical Procedure)

Given A € R™*":
@ Compute ATA € R,
@ Solve eigenproblem: ATAv; = A;v; with 4; > --- > A, > 0.
@ Set singular values: o; = \/A;, for A; > 0.
© Form V = [y --- v,] (orthogonal).
© For each o; > 0: define u; = A?‘zl
O Complete {u;} to an orthonormal basis of R” (add vectors spanning
null(A1)).
@ Build X with o; on diagonal: A = ULV,
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Outline

© SVD: Worked example
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Example Setup

11
A=(0 1| er¥2
10

We will compute A = ULV,
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Example Setup

11
A=(0 1| er¥2
10

We will compute A = ULV,

e Compute A'A (a2 x 2 symmetric matrix)

o Get eigenpairs (A;,v;)
A 3
® gl.:\/z-,thenui:%

i
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Step 1: Compute A" A
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Step 1: Compute A" A

Observation

ATA is symmetric positive semidefinite = real eigenvalues, orthonormal
eigenvectors.
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Step 2: Eigenvalues of ATA
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Step 2: Eigenvalues of ATA

Solve

det((? ;) —M) :det<2_17L 2—11) =(2-A)-1=0.

2-AP=1=2-A==+1= A4 =3 L=1

So

Singular values

a=Vvh=V3 a=vVh=l
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Step 3: Right Singular Vectors (V)
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Step 3: Right Singular Vectors (V)

For A; =3:

(@ )-spmo= 5 2pmoens()
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Step 3: Right Singular Vectors (V)

For A; =3:

((2)-)r=o=(

Normalize:

._
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Step 4: Left Singular Vectors (u; =
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Av;
O; -

Step 4: Left Singular Vectors (u; =

Compute Avy:
11 2
Avi =10 1 L <1) — L 1
1 o) V2l 2\,
Thus
Avy 1 1 2 1
Uuy=—=—F7——= 1 —_ 1
O] 3 V2 1 6 |
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Step 4: Left Singular Vectors (u; = A‘i’

Compute Avy:
| (1) i 1 <1) 1 (2
v1: = —
1 o) V2N V2
Thus
Avy 1 1 ? 1 ?
u = — = D = —_—
Y 3 V2 ) Vel
Compute Av;:
1 1 0
1 1 1
w (o) 2 ()= (5
1 o) V2\-1 V2

Since 0, =1,
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Step 5: Complete U and Build X

We need U € R3*3 orthogonal. We already have u;,u,. Choose u3
orthonormal to both (one valid choice):

Assemble U

2 0
\/16 1 1 T

U= Tg _fﬁ _?5 , U U=1L.
Ve V2 V3
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Final SVD (Check)

2 1

I /1 1 Ve o 76 01 7§1
V:ﬁ<1 _1), =0 1), U=|% ¥ &
0 O S L
V6 V2 V3

Quick sanity checks

o,=V3>0,=1, A'A=Vdiag(3,1)V', AA" =Udiag(3,1,0)U".
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@ SVD: Applications to Image Compression
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Applications of SVD: PCA, Denoising, Compression

o PCA: principal components
from SVD of centered data
matrix

Best rank-k approximation

(Eckart—Young)

IfA=UZV' and T; = diag(o1,...,0k), | o Denoising: drop small singular
then

. values
A= UiV e Compression: store Uy, X, Vi
minimizes ||A — A2 and [|A — Agl|F @ Recommenders: low-rank
among all rank-k matrices. structure in user—item matrices

Least Squares & Pseudoinverse

@ Stable solutions to ill-conditioned problems (via truncation /
regularization)

o Computing ranks, nullspaces, and condition numbers:

(0}
Ko (A) = gl
r
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SVD: Image Compression

Image Size: 1500 x 1500 x 3
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SVD: Grayscale Imaging
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SVD: Color Imaging

Original SVD Compressed (k=50)

-
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Image Compression: Sizes & Storage Saved

Matrix size bookkeeping (grayscale)

Original image: A € R™*"  storage ~ mn numbers.
Truncated SVD (rank k):

A= ULV, UgeR™* 5 e ROK v, e RV

Storage ~ mk + k+ nk = k(m+n+ 1) numbers (since X is diagonal).

Space saved (when k < min(m, n))

Compression ratio (approx.):

mn

CRe —.
k(m+n+1)

\
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| can't change the direction

Thank You! ===

(Jimmy Dean)

Dr. D Bhanu Prakash
dbhanuprakash233.github.io
Mail: db_maths@vignan.ac.in
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Applications I: Least Squares & Pseudoinverse

Least squares (possibly rank-deficient)

For Ax ~ b, the minimum-norm least squares solution is
x=A%b, At =vItUuT,

where X replaces each nonzero o; by 1/0; and transposes dimensions.

@ Stable solutions to ill-conditioned problems (via truncation /
regularization)

o Computing ranks, nullspaces, and condition numbers:

O
K> (A) = ;1
r
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Applications II: PCA, Denoising, Compression,

Recommendations

T o PCA: principal components
Best rank-k approximation
from SVD of centered data
(Eckart—Young) matrix

If A= UZVT and %, = diag(o1,...,01), | o Denoising: drop small singular
then values

Ak = UkaVkT @ Compression: store Uy, X, Vi
minimizes [|A — Agl|> and [|A — Al @ Recommenders: low-rank
among all rank-k matrices. structure in user—item matrices

Rule of thumb
Energy captured by top-k:
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Geometric Meaning (Action on the Unit Sphere)

e V' rotates/reflects in R”
o X stretches along coordinate axes

@ U rotates/reflects in R

Unit sphere to ellipsoid

For x € R" with ||x|» = 1, the set {Ax} is an ellipsoid in R” with semi-axis
lengths o, ..., 0.

v
Norm connections

p
lAlz=01,  lAlz=Y o
i=1
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Existence viaA'A and AAT

Core theorem (real case)

ATA is symmetric positive semidefinite. Hence it has an orthonormal
eigenbasis:

ATA=VAV',  A=diag(A,...,A,), ;i >0.

Define o; = V/A;.

e Right singular vectors: eigenvectors of AT A
o Left singular vectors: eigenvectors of AA "

Constructing singular vectors

If v; is an eigenvector of ATA with A; > 0, then

Avi
U= —
O;

is a unit left singular vector.
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Computational Algorithm (Numerical Linear Algebra View)

Stable SVD (high-level steps)

Most software computes SVD without explicitly forming A " A (for stability):
@ Bidiagonalization: A = QlBQZT where Q1, 0, orthogonal and B
bidiagonal.
@ Diagonalization of B: compute B = UXV " using QR iterations on
bidiagonal form.
@ Combine: U=0,U, V=0,VsoA=ULV'.

Why avoid A" A numerically?

Condition numbers square: k(A'A) = k(A)? (loss of accuracy for
ill-conditioned matrices).
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