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Matrix Decomposition: Definition & Importance

Definition (Matrix Decomposition / Factorization)
Given a matrix A, a decomposition writes

A = A1A2 · · ·Ak

where factors Ai have a special structure (triangular, orthogonal, diagonal,
etc.).

Why to decompose A?
Turns a hard problem on A into easier problems on structured factors.

Enables: solving linear systems, least squares, eigen-analysis,
compression, stability analysis.

Good decompositions give numerical stability, interpretability, and
computational efficiency.
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Common Decompositions

LU: A = LU (Gaussian elimination)

Cholesky: A = LL⊤ for SPD matrices

QR: A = QR (least squares)

Eigendecomposition: A = QΛQ−1

(square matrices)

SVD (works for any m×n)

A = UΣV⊤

Always exists
(real/complex)

Best low-rank
approximation
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Singular Value Decomposition

Singular Value Decomposition (Real case)

For any A ∈ Rm×n, there exist orthogonal matrices (i.e., A⊤ = A−1)

U ∈ Rm×m, V ∈ Rn×n

and a diagonal (rectangular) matrix

Σ ∈ Rm×n, Σ =

(
diag(σ1, . . . ,σr) 0

0 0

)
,

such that

A = UΣV⊤, σ1 ≥ σ2 ≥ ·· · ≥ σr > 0, r = rank(A).

σi are singular values; columns of U are left singular vectors; columns of V
are right singular vectors.
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Step-by-Step SVD Construction (Mathematical Procedure)

Algorithm
Given A ∈ Rm×n:

1 Compute A⊤A ∈ Rn×n.

2 Solve eigenproblem: A⊤Avi = λivi with λ1 ≥ ·· · ≥ λn ≥ 0.
3 Set singular values: σi =

√
λi, for λi > 0.

4 Form V = [v1 · · · vn] (orthogonal).

5 For each σi > 0: define ui =
Avi

σi
.

6 Complete {ui} to an orthonormal basis of Rm (add vectors spanning
null(A⊤)).

7 Build Σ with σi on diagonal: A = UΣV⊤.
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Example Setup

Matrix

A =

1 1
0 1
1 0

 ∈ R3×2.

We will compute A = UΣV⊤.

Process
Compute A⊤A (a 2×2 symmetric matrix)

Get eigenpairs (λi,vi)

σi =
√

λi, then ui =
Avi

σi
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Step 1: Compute A⊤A

Matrix

A =

1 1
0 1
1 0

 ∈ R3×2.

A⊤ =

(
1 0 1
1 1 0

)
⇒ A⊤A =

(
1 0 1
1 1 0

)1 1
0 1
1 0

=

(
2 1
1 2

)
.

Observation
A⊤A is symmetric positive semidefinite ⇒ real eigenvalues, orthonormal
eigenvectors.
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Step 2: Eigenvalues of A⊤A

Solve

det
((

2 1
1 2

)
−λ I

)
= det

(
2−λ 1

1 2−λ

)
= (2−λ )2 −1 = 0.

So
(2−λ )2 = 1 ⇒ 2−λ =±1 ⇒ λ1 = 3, λ2 = 1.

Singular values

σ1 =
√

λ1 =
√

3, σ2 =
√

λ2 = 1.
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Step 3: Right Singular Vectors (V)

For λ1 = 3:((
2 1
1 2

)
−3I

)
v = 0 ⇒

(
−1 1
1 −1

)
v = 0 ⇒ v1 ∝

(
1
1

)
.

Normalize:

v1 =
1√
2

(
1
1

)
.

For λ2 = 1:((
2 1
1 2

)
− I

)
v = 0 ⇒

(
1 1
1 1

)
v = 0 ⇒ v2 ∝

(
1
−1

)
, v2 =

1√
2

(
1
−1

)
.

Matrix V (columns are v1,v2)

V =
1√
2

(
1 1
1 −1

)
, V⊤V = I2.
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Step 4: Left Singular Vectors (ui =
Avi
σi

)

Compute Av1:

Av1 =

1 1
0 1
1 0

 1√
2

(
1
1

)
=

1√
2

2
1
1

 .

Thus

u1 =
Av1

σ1
=

1√
3
· 1√

2

2
1
1

=
1√
6

2
1
1

 .

Compute Av2:

Av2 =

1 1
0 1
1 0

 1√
2

(
1
−1

)
=

1√
2

 0
−1
1

 .

Since σ2 = 1,

u2 = Av2 =
1√
2

 0
−1
1

 .
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Step 5: Complete U and Build Σ

We need U ∈ R3×3 orthogonal. We already have u1,u2. Choose u3
orthonormal to both (one valid choice):

u3 =
1√
3

 1
−1
−1

 .

Assemble U

U =


2√
6

0 1√
3

1√
6

− 1√
2

− 1√
3

1√
6

1√
2

− 1√
3

 , U⊤U = I3.

Rectangular Σ ∈ R3×2

Σ =

√
3 0

0 1
0 0

 .

Dr. D Bhanu Prakash Singular Value Decomposition VFSTR, India. 15 / 29



Final SVD (Check)

Result

A = UΣV⊤

with

V =
1√
2

(
1 1
1 −1

)
, Σ =

√
3 0

0 1
0 0

 , U =


2√
6

0 1√
3

1√
6

− 1√
2

− 1√
3

1√
6

1√
2

− 1√
3

 .

Quick sanity checks

σ1 =
√

3 ≥ σ2 = 1, A⊤A = V diag(3,1)V⊤, AA⊤ = U diag(3,1,0)U⊤.
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Applications of SVD: PCA, Denoising, Compression

Best rank-k approximation
(Eckart–Young)

If A = UΣV⊤ and Σk = diag(σ1, . . . ,σk),
then

Ak = UkΣkV⊤
k

minimizes ∥A−Ak∥2 and ∥A−Ak∥F

among all rank-k matrices.

PCA: principal components
from SVD of centered data
matrix

Denoising: drop small singular
values

Compression: store Uk,Σk,Vk

Recommenders: low-rank
structure in user–item matrices

Least Squares & Pseudoinverse
Stable solutions to ill-conditioned problems (via truncation /
regularization)

Computing ranks, nullspaces, and condition numbers:

κ2(A) =
σ1

σr
.
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SVD: Image Compression

Image Size: 1500×1500×3
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SVD: Grayscale Imaging
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SVD: Color Imaging

Dr. D Bhanu Prakash Singular Value Decomposition VFSTR, India. 21 / 29



Image Compression: Sizes & Storage Saved

Matrix size bookkeeping (grayscale)
Original image: A ∈ Rm×n storage ≈ mn numbers.
Truncated SVD (rank k):

A ≈ UkΣkV⊤
k , Uk ∈ Rm×k, Σk ∈ Rk×k, Vk ∈ Rn×k.

Storage ≈ mk+ k+nk = k(m+n+1) numbers (since Σk is diagonal).

Space saved (when k ≪ min(m,n))
Compression ratio (approx.):

CR ≈ mn
k(m+n+1)

.
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Thank You!
Dr. D Bhanu Prakash

dbhanuprakash233.github.io
Mail: db maths@vignan.ac.in
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Applications I: Least Squares & Pseudoinverse

Least squares (possibly rank-deficient)
For Ax ≈ b, the minimum-norm least squares solution is

x⋆ = A+b, A+ = VΣ
+U⊤,

where Σ+ replaces each nonzero σi by 1/σi and transposes dimensions.

Stable solutions to ill-conditioned problems (via truncation /
regularization)

Computing ranks, nullspaces, and condition numbers:

κ2(A) =
σ1

σr
.
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Applications II: PCA, Denoising, Compression,
Recommendations

Best rank-k approximation
(Eckart–Young)

If A = UΣV⊤ and Σk = diag(σ1, . . . ,σk),
then

Ak = UkΣkV⊤
k

minimizes ∥A−Ak∥2 and ∥A−Ak∥F

among all rank-k matrices.

PCA: principal components
from SVD of centered data
matrix

Denoising: drop small singular
values

Compression: store Uk,Σk,Vk

Recommenders: low-rank
structure in user–item matrices

Rule of thumb
Energy captured by top-k:

∑
k
i=1 σ2

i

∑
r
i=1 σ2

i
.
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Geometric Meaning (Action on the Unit Sphere)

V⊤ rotates/reflects in Rn

Σ stretches along coordinate axes

U rotates/reflects in Rm

Unit sphere to ellipsoid
For x ∈ Rn with ∥x∥2 = 1, the set {Ax} is an ellipsoid in Rm with semi-axis
lengths σ1, . . . ,σr.

Norm connections

∥A∥2 = σ1, ∥A∥2
F =

r

∑
i=1

σ
2
i .
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Existence via A⊤A and AA⊤

Core theorem (real case)

A⊤A is symmetric positive semidefinite. Hence it has an orthonormal
eigenbasis:

A⊤A = VΛV⊤, Λ = diag(λ1, . . . ,λn), λi ≥ 0.

Define σi =
√

λi.

Right singular vectors: eigenvectors of A⊤A
Left singular vectors: eigenvectors of AA⊤

Constructing singular vectors

If vi is an eigenvector of A⊤A with λi > 0, then

ui =
Avi

σi

is a unit left singular vector.
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Computational Algorithm (Numerical Linear Algebra View)

Stable SVD (high-level steps)

Most software computes SVD without explicitly forming A⊤A (for stability):
1 Bidiagonalization: A = Q1BQ⊤

2 where Q1,Q2 orthogonal and B
bidiagonal.

2 Diagonalization of B: compute B = ŨΣṼ⊤ using QR iterations on
bidiagonal form.

3 Combine: U = Q1Ũ, V = Q2Ṽ so A = UΣV⊤.

Why avoid A⊤A numerically?

Condition numbers square: κ(A⊤A) = κ(A)2 (loss of accuracy for
ill-conditioned matrices).

Dr. D Bhanu Prakash Singular Value Decomposition VFSTR, India. 29 / 29


	Matrix Decomposition
	Singular Value Decomposition: Algorithm
	SVD: Worked example
	SVD: Applications to Image Compression

