25MT103

LINEAR ALGEBRA

UNIT -1: MATRICES

Dr. D Bhanu Prakash

Assistant Professor

(Deemed to be University) - Estd. u/s 3 of UGC Act 1956

MATRICES:

Elementary row and column operations, Elementary matrices, Similar Matrices, Echelon form, Row reduced echelon form, Rank of a matrix, Inverse of a matrix by Gauss-Jordan method, LU decomposition.

SYLLABUS

EXAMPLE 3.7 Solve the following system:
$$x + 2y - 3z = 1$$

 $2x + 5y - 8z = 4$
 $3x + 8y - 13z = 7$

We solve the system by Gaussian elimination.

Part A. (Forward Elimination) We use the coefficient 1 of x in the first equation L_1 as the pivot in order to eliminate x from the second equation L_2 and from the third equation L_3 . This is accomplished as follows:

- (1) Multiply L_1 by the multiplier m = -2 and add it to L_2 ; that is, "Replace L_2 by $-2L_1 + L_2$."
- (2) Multiply L_1 by the multiplier m = -3 and add it to L_3 ; that is, "Replace L_3 by $-3L_1 + L_3$."

The two steps yield

$$x + 2y - 3z = 1$$

 $y - 2z = 2$
 $2y - 4z = 4$ or $x + 2y - 3z = 1$
 $y - 2z = 2$

(The third equation is deleted, because it is a multiple of the second equation.) The system is now in echelon form with free variable z.

Part B. (Backward Elimination) To obtain the general solution, let the free variable z = a, and solve for x and y by back-substitution. Substitute z = a in the second equation to obtain y = 2 + 2a. Then substitute z = a and y = 2 + 2a into the first equation to obtain

$$x + 2(2+2a) - 3a = 1$$
 or $x + 4 + 4a - 3a = 1$ or $x = -3 - a$

Thus, the following is the general solution where a is a parameter:

$$x = -3 - a$$
, $y = 2 + 2a$, $z = a$ or $u = (-3 - a, 2 + 2a, a)$

EXAMPLE 3.22 Suppose $A = \begin{bmatrix} 1 & 2 & -3 \\ -3 & -4 & 13 \\ 2 & 1 & -5 \end{bmatrix}$. We note that A may be reduced to triangular form by the operations

"Replace R_2 by $3R_1 + R_2$ "; "Replace R_3 by $-2R_1 + R_3$ "; and then "Replace R_3 by $\frac{3}{2}R_2 + R_3$ "

That is,

$$A \sim \begin{bmatrix} 1 & 2 & -3 \\ 0 & 2 & 4 \\ 0 & -3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 \\ 0 & 2 & 4 \\ 0 & 0 & 7 \end{bmatrix}$$

This gives us the classical factorization A = LU, where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & -\frac{3}{2} & 1 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 2 & 4 \\ 0 & 0 & 7 \end{bmatrix}$$

Example. For what values of $a \in \mathbb{R}$, the following system of equations has (i) no solution (ii) a unique solution or infinitely many solutions

$$x + 2y + z = 2$$
$$2x - 2y + 3z = 1$$
$$x + 2y - az = a.$$

Sol. No solution for a = -1 and unique solution for $a \neq -1$.