

25MT103: Linear Algebra

Unit 2: Systems of Linear Equations

Dr. D Bhanu Prakash

Course Page: dbhanuprakash233.github.io/LA

Assistant Professor,
Department of Mathematics and Statistics.
Contact: db.maths@vignan.ac.in.
dbhanuprakash233.github.io.

Linear Systems - Lecture Slides

Syllabus

- ☞ Systems of Linear Equations
- ☞ Matrix Representation
- ☞ Consistency using rank
- ☞ Gaussian Elimination
- ☞ Gauss-Jordan method
- ☞ Do-little method

Outline

1 Definitions

2 Solution Methods

- Gaussian Elimination
- Gauss–Jordan
- Doolittle (LU)

Outline

- 1 Definitions
- 2 Solution Methods
 - Gaussian Elimination
 - Gauss–Jordan
 - Doolittle (LU)

Linear Equation

Definition

A linear equation is an equality where each term is either a constant or a constant multiplied by a variable (no products or powers of variables). It is of the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b.$$

Linear Equation

Definition

A linear equation is an equality where each term is either a constant or a constant multiplied by a variable (no products or powers of variables). It is of the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b.$$

Examples

- ① $2x + 3y = 5$
- ② $4x - y = 1$
- ③ $x = 0$

Linear System

Definition

A *linear system* consists of one or more linear equations. In n variables, it takes the form

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1, \quad \dots, \quad a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m.$$

Linear System

Definition

A *linear system* consists of one or more linear equations. In n variables, it takes the form

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1, \quad \dots, \quad a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m.$$

Example

$$2x + 3y = 5$$

$$4x - y = 1$$

represents a 2×2 linear system. Solutions correspond to intersection points of lines in 2D space.

Matrix Representation of Linear Systems

Representation

The system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2, \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$

can be compactly written as $\mathbf{Ax} = \mathbf{b}$, with

$$A = (a_{ij})_{m \times n}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}.$$

Example

For the system $2x + 3y = 5$, $4x - y = 1$,

$$A = \begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}.$$

System & Solution Space

System of Linear Equations

A collection of linear equations in variables x_1, \dots, x_n ; can be written as

$$A\mathbf{x} = \mathbf{b}, \quad A \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m.$$

System & Solution Space

System of Linear Equations

A collection of linear equations in variables x_1, \dots, x_n ; can be written as

$$A\mathbf{x} = \mathbf{b}, \quad A \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m.$$

Solution Types

- *Unique solution* if $\text{rank}(A) = \text{rank}([A|\mathbf{b}]) = n$.
- *No solution* (inconsistent) if $\text{rank}(A) < \text{rank}([A|\mathbf{b}])$.
- *Infinitely many solutions* if $\text{rank}(A) = \text{rank}([A|\mathbf{b}]) < n$ (free variables exist).

ERO and Rank

ERO and Rank

Elementary Row Operations

Three types: (1) swap two rows, (2) multiply a row by nonzero scalar, (3) add a multiple of one row to another. These preserve solution set.

Rank

$\text{rank}(M)$ is the number of leading 1s (pivot columns) in row-echelon form of M , equivalently dimension of column space. Use rank to determine consistency.

Rank and Consistency

Augmented Matrix

Represent the system $Ax = b$ by the augmented matrix $[A|b]$ obtained by appending b as an extra column to A . Row operations on $[A|b]$ correspond to equivalent systems.

Consistency Criterion

System is consistent iff $\text{rank}(A) = \text{rank}([A|b])$. If consistent and $\text{rank} = n$, unique solution.

Examples

Case 1

Calculate the number of solutions for

$$x + 2y - z = 3$$

$$2x - y + 3z = 7$$

$$3x + y + 2z = 10$$

Examples

Case 1

Calculate the number of solutions for

$$x + 2y - z = 3$$

$$2x - y + 3z = 7$$

$$3x + y + 2z = 10$$

Unique Solution.

Examples

Case 2

$$x + y + z = 6$$

$$2x + 2y + 2z = 12$$

$$x - y + 0z = 0$$

Examples

Case 2

$$x + y + z = 6$$

$$2x + 2y + 2z = 12$$

$$x - y + 0z = 0$$

Infinitely many solutions.

Examples

Case 3

$$x + y + z = 3$$

$$2x + 2y + 2z = 6$$

$$x + y + z = 4$$

Examples

Case 3

$$x + y + z = 3$$

$$2x + 2y + 2z = 6$$

$$x + y + z = 4$$

No Solution.

Examples

Case 4

$$x + 2y + 3z = 1$$

$$2x + 4y + 6z = 2$$

Examples

Case 4

$$x + 2y + 3z = 1$$

$$2x + 4y + 6z = 2$$

Infinitely many solutions.

Outline

1 Definitions

2 Solution Methods

- Gaussian Elimination
- Gauss–Jordan
- Doolittle (LU)

Worked Example: Problem Statement

Solve the system:

$$x + y + z = 6$$

$$2x + 3y + z = 14$$

$$x - y + 2z = 2$$

We will solve this system by (1) Gaussian elimination, (2) Gauss–Jordan, and (3) Doolittle (LU) decomposition — step by step.

Gaussian Elimination

Gaussian Elimination

Reduce $[A|b]$ to *row-echelon form* (upper triangular) using elementary row operations; then use back-substitution to find unknowns.

Gaussian Elimination

$$[A|\mathbf{b}] = \left[\begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 2 & 3 & 1 & 14 \\ 1 & -1 & 2 & 2 \end{array} \right]$$

Gaussian Elimination

$$[A|\mathbf{b}] = \left[\begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 2 & 3 & 1 & 14 \\ 1 & -1 & 2 & 2 \end{array} \right]$$

Use $R_2 \leftarrow R_2 - 2R_1$ and $R_3 \leftarrow R_3 - R_1$:

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & -1 & 2 \\ 0 & -2 & 1 & -4 \end{array} \right]$$

Gaussian Elimination

Pivot in row2 is 1. Use $R_3 \leftarrow R_3 + 2R_2$:

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & -1 & 0 \end{array} \right]$$

Gaussian Elimination

Pivot in row2 is 1. Use $R_3 \leftarrow R_3 + 2R_2$:

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & -1 & 0 \end{array} \right]$$

Back-substitution:

from row3, $-z = 0 \Rightarrow z = 0$.

Row2: $y - z = 2 \Rightarrow y = 2$.

Row1: $x + y + z = 6 \Rightarrow x = 4$.

Unique solution: $(x, y, z) = (4, 2, 0)$.

Gauss–Jordan Method

Gauss–Jordan

Reduce $[A|\mathbf{b}]$ to reduced row-echelon form (RREF) so each pivot is 1 and is the only nonzero entry in its column. Solutions are read directly; no back-substitution required.

Gauss–Jordan: Start with augmented matrix

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 2 & 3 & 1 & 14 \\ 1 & -1 & 2 & 2 \end{array} \right]$$

Gauss–Jordan: Make zeros below and above pivots

First eliminate below pivot in column1: $R_2 \leftarrow R_2 - 2R_1$, $R_3 \leftarrow R_3 - R_1$ giving

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & -1 & 2 \\ 0 & -2 & 1 & -4 \end{array} \right]$$

Gauss–Jordan: Make zeros below and above pivots

First eliminate below pivot in column1: $R_2 \leftarrow R_2 - 2R_1$, $R_3 \leftarrow R_3 - R_1$ giving

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & -1 & 2 \\ 0 & -2 & 1 & -4 \end{array} \right]$$

Then make pivot in row2 the only nonzero in its column: add $2 \times$ row2 to row3 and subtract row2 from row1:

$$\left[\begin{array}{ccc|c} 1 & 0 & 2 & 4 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & -1 & 0 \end{array} \right]$$

Gauss–Jordan: Make zeros below and above pivots

First eliminate below pivot in column1: $R_2 \leftarrow R_2 - 2R_1$, $R_3 \leftarrow R_3 - R_1$ giving

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & -1 & 2 \\ 0 & -2 & 1 & -4 \end{array} \right]$$

Then make pivot in row2 the only nonzero in its column: add $2 \times$ row2 to row3 and subtract row2 from row1:

$$\left[\begin{array}{ccc|c} 1 & 0 & 2 & 4 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & -1 & 0 \end{array} \right]$$

Finally scale row3 by -1 to make pivot 1 and eliminate above: $R_3 \leftarrow -R_3$ then $R_1 \leftarrow R_1 - 2R_3$, $R_2 \leftarrow R_2 + R_3$ leads to RREF

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

Doolittle (LU) Method

Doolittle's LU Decomposition

If A is square and can be decomposed as $A = LU$ where L is unit lower-triangular (1s on diagonal) and U is upper-triangular, solve by

$$Ly = b \quad (\text{forward substitution}), \quad Ux = y \quad (\text{back substitution}).$$

Doolittle constructs L with unit diagonal and computes entries row-by-row.

Doolittle: Setup

We want $A = LU$ with

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & -1 & 2 \end{pmatrix}, \quad L = \begin{pmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{pmatrix}, \quad U = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}.$$

Doolittle computes rows of U and columns of L sequentially.

Doolittle: Compute LU

From $u_{1j} = a_{1j}$: $u_{11} = 1, u_{12} = 1, u_{13} = 1$. Compute $\ell_{21} = a_{21}/u_{11} = 2/1 = 2$, $\ell_{31} = a_{31}/u_{11} = 1/1 = 1$.

Doolittle: Compute LU

From $u_{1j} = a_{1j}$: $u_{11} = 1, u_{12} = 1, u_{13} = 1$. Compute $\ell_{21} = a_{21}/u_{11} = 2/1 = 2$, $\ell_{31} = a_{31}/u_{11} = 1/1 = 1$.

Compute $u_{22} = a_{22} - \ell_{21}u_{12} = 3 - 2 \cdot 1 = 1$.

Compute $u_{23} = a_{23} - \ell_{21}u_{13} = 1 - 2 \cdot 1 = -1$.

Compute $\ell_{32} = (a_{32} - \ell_{31}u_{12})/u_{22} = (-1 - 1 \cdot 1)/1 = -2$.

Doolittle: Compute LU

From $u_{1j} = a_{1j}$: $u_{11} = 1, u_{12} = 1, u_{13} = 1$. Compute $\ell_{21} = a_{21}/u_{11} = 2/1 = 2$, $\ell_{31} = a_{31}/u_{11} = 1/1 = 1$.

Compute $u_{22} = a_{22} - \ell_{21}u_{12} = 3 - 2 \cdot 1 = 1$.

Compute $u_{23} = a_{23} - \ell_{21}u_{13} = 1 - 2 \cdot 1 = -1$.

Compute $\ell_{32} = (a_{32} - \ell_{31}u_{12})/u_{22} = (-1 - 1 \cdot 1)/1 = -2$.

Compute

$$u_{33} = a_{33} - \ell_{31}u_{13} - \ell_{32}u_{23} = 2 - 1 \cdot 1 - (-2) \cdot (-1) = 2 - 1 - 2 = -1.$$

So

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{pmatrix}.$$

Doolittle: Solve $Ly = \mathbf{b}$ (forward sub)

Solve

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 14 \\ 2 \end{pmatrix}.$$

Forward substitution: $y_1 = 6$. $2y_1 + y_2 = 14 \Rightarrow y_2 = 14 - 2 \cdot 6 = 2$.
 $y_1 - 2y_2 + y_3 = 2 \Rightarrow y_3 = 2 - 6 + 4 = 0$. So $\mathbf{y} = (6, 2, 0)^T$.

Doolittle: Solve $U\mathbf{x} = \mathbf{y}$ (back sub)

Solve

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 0 \end{pmatrix}.$$

Back substitution: from row3 $-z = 0 \Rightarrow z = 0$. Row2: $y - z = 2 \Rightarrow y = 2$.
Row1: $x + y + z = 6 \Rightarrow x = 4$.

Thank You!

Dr. D Bhanu Prakash

dbhanuprakash233.github.io

Mail: db_maths@vignan.ac.in

I can't change the direction
of the wind, but I can adjust
my sails to always reach
my destination.

(Jimmy Dean)

