

25MT103: Linear Algebra

Unit 2: Systems of Linear Equations

Dr. D Bhanu Prakash

Course Page: dbhanuprakash233.github.io/LA

Assistant Professor,
Department of Mathematics and Statistics.
Contact: db.maths@vignan.ac.in.
dbhanuprakash233.github.io.

Linear Systems - Tutorial

Syllabus

- ☞ Systems of Linear Equations
- ☞ Matrix Representation
- ☞ Consistency using rank
- ☞ Gaussian Elimination
- ☞ Gauss-Jordan method
- ☞ Do-little method

Consistency of system

Discuss the consistency of solutions of the system:

- $3x + 4y + 5z = a, 4x + 5y + 6z = b, 5x + 6y + 7z = c.$
- $(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0, (\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0, 2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0.$ (Hint: Homogeneous system has infinite solutions if the determinant of coefficient matrix is zero).
- $x + y + z = 2, 2x + 2y + 2z = 4, x + y + z = 3.$
- $x - 2y + 3t = 2, 2x + y + z + t = -4, 4x - 3y + z + 7t = 8.$ (Note: Change $-2y$ in first equation to $+2y$ and the consistency changes from inconsistent system to infinite number of solutions. Even a single sign change matters.)

Solve Linear Systems

① Solve by Gaussian elimination:

$$x + 2y + z = 5, \quad 3x + y - 2z = 4, \quad 2x + 3y + 4z = 10.$$

② Determine consistency and solve if possible:

$$x + y + z = 2, \quad 2x + 2y + 2z = 4, \quad x + y + z = 3.$$

③ Use Gauss–Jordan to find RREF and solution for:

$$2x + 4y - 2z = 2, \quad -x - y + z = -1, \quad x + 2y + 3z = 7.$$

④ Compute LU (Doolittle) for $A = \begin{pmatrix} 2 & -1 & 1 \\ 4 & 1 & -1 \\ -2 & 2 & 3 \end{pmatrix}$ and solve

$$A\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

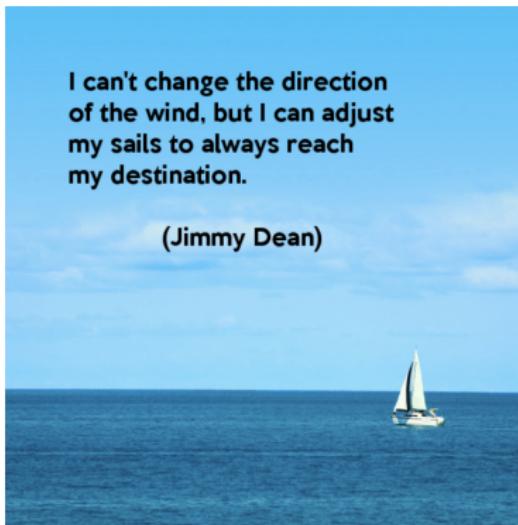
Reasoning

Suppose B is a 3×3 matrix of rank 2. A new matrix C is obtained by multiplying the second column by 5 and adding it to the third column. Will the rank of C necessarily remain 2? Give a logical explanation and verify your claim using an example matrix.

Solution: Rank remains 2.

Reason: Replacing a column by itself plus a scalar multiple of another column is an elementary column operation (a column addition); such column operations preserve the rank.

Thank You!


Dr. D Bhanu Prakash

dbhanuprakash233.github.io

Mail: db_maths@vignan.ac.in

I can't change the direction
of the wind, but I can adjust
my sails to always reach
my destination.

(Jimmy Dean)

