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Syllabus

☞ Characteristic Equation

☞ Eigenvalues, Eigenvectors and their Properties

☞ Cayley-Hamilton Theorem

☞ Diagonalization of a Matrix (only for diagonalizable matrices)

☞ Inverse of a matrix by Cayley-Hamilton Theorem

☞ Power of a diagonalizable square matrix
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Definitions

Linear Independence

Definition: Linear Independence

A set {v1, . . . ,vk} ⊂ Rn is linearly independent if the only scalars c1, . . . ,ck
with

c1v1 + · · ·+ ckvk = 0

are c1 = · · ·= ck = 0. Otherwise the set is linearly dependent.

Quick Example (2D)

The vectors {(1,1)⊤,(1,−1)⊤} are linearly independent because the 2×2
matrix with these columns has nonzero determinant.

Quick Example (3D)

The vectors {(1,0,0)⊤,(0,1,0)⊤,(1,1,0)⊤} are linearly dependent (third is
sum of first two).
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Definitions

Characteristic Equation and Eigenvalues

Definition: Characteristic Equation

For square A ∈ Rn×n, the characteristic polynomial is

pA(λ ) = det(A−λ I).

The scalar roots of pA(λ ) = 0 are the eigenvalues of A.

2×2 Example

Let A =

(
2 1
1 2

)
. Then det(A−λ I) = (2−λ )2−1 = λ 2−4λ +3. Roots:

λ = 3,1.
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Definitions

Eigenvectors and Properties

Definition: Eigenvector

An eigenvector x ̸= 0 associated to eigenvalue λ satisfies

(A−λ I)x = 0.

The set of all such x (with zero) is the eigenspace Null(A−λ I).

Useful Properties
Eigenvectors for distinct eigenvalues are linearly independent.

For triangular matrices, eigenvalues are diagonal entries.

Sum of eigenvalues = tr(A); product = det(A).
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Definitions

Algebraic Multiplicity and Geometric Multiplicity

Definitions
Algebraic multiplicity (AM) of eigenvalue λ : multiplicity of λ as a root
of the characteristic polynomial pA(λ ) = det(A−λ I).

Geometric multiplicity (GM) of λ : dimension of the eigenspace
Null(A−λ I).

Important facts

For each eigenvalue λ ,

1≤ GM(λ )≤ AM(λ ).

Matrix A is diagonalizable iff the total number of linearly independent
eigenvectors equals n (equivalently GM(λ ) = AM(λ ) for every eigenvalue).
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Definitions

Cayley–Hamilton Theorem

Cayley–Hamilton

If pA(λ ) = det(A−λ I) = λ n + cn−1λ n−1 + · · ·+ c0, then

pA(A) = An + cn−1An−1 + · · ·+ c0I = 0.

2×2 quick use

For A =

(
2 1
1 2

)
, pA(λ ) = λ 2−4λ +3. Thus A2−4A+3I = 0; rearrange to

get expressions useful for A−1 or powers.

Dr. D Bhanu Prakash Unit 3: Eigenvalues VFSTR, India. 9 / 33



Definitions

Cayley–Hamilton Theorem

Cayley–Hamilton

If pA(λ ) = det(A−λ I) = λ n + cn−1λ n−1 + · · ·+ c0, then

pA(A) = An + cn−1An−1 + · · ·+ c0I = 0.

2×2 quick use

For A =

(
2 1
1 2

)
, pA(λ ) = λ 2−4λ +3. Thus A2−4A+3I = 0; rearrange to

get expressions useful for A−1 or powers.

Dr. D Bhanu Prakash Unit 3: Eigenvalues VFSTR, India. 9 / 33



Definitions

Diagonalization and Powers

Diagonalization

A is diagonalizable if there exists invertible P with P−1AP = D (diagonal).
Then Ak = PDkP−1 which is cheap to compute.

2×2 example

A =

(
2 1
1 2

)
has eigenpairs leading to P =

(
1 1
1 −1

)
,D = diag(3,1), so

An = Pdiag(3n,1n)P−1.

3×3 remark
For a 3×3 diagonalizable matrix, the same idea applies: diagonalize and raise
diagonal entries to the kth power.
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Example

Problem: matrix under study

We study the matrix

A =

 5 −10 −5

2 14 2

−4 −8 6

 .

We will compute

pA(λ )

eigenvalues with algebraic multiplicities

eigenspaces (and their dimensions)

eigenvectors (integer-scaled and normalized)

an explicit inverse P−1 of the modal matrix P

verify diagonalization
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Example

Step 1: compute pA(λ ) = det(A−λ I)

Form the matrix A−λ I:

A−λ I =

5−λ −10 −5

2 14−λ 2

−4 −8 6−λ

 .

We compute the determinant by cofactor expansion along the first row.

det(A−λ I) = (5−λ )det

(
14−λ 2

−8 6−λ

)
− (−10)det

(
2 2

−4 6−λ

)

+(−5)det

(
2 14−λ

−4 −8

)
.
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Example

Step 1 (cont.)

det(A−λ I) = (5−λ )
(
(14−λ )(6−λ )+16

)
+10

(
2(6−λ )+8

)
−5
(
−16+4(14−λ )

)
.

Now expand terms carefully (expand each parenthesis and collect like powers
of λ ). After simplification one obtains

det(A−λ I) = (λ −10)2(λ −5).

Hence the characteristic polynomial (up to sign) factors as

pA(λ ) = (λ −10)2(λ −5).
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Example

Step 1 (conclusion): eigenvalues and algebraic multiplicities

From pA(λ ) we read:

λ1 = 5, AM(5) = 1; λ2 = 10, AM(10) = 2.

Next we compute eigenspaces to find geometric multiplicities and
eigenvectors.
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Example

Step 2: Eigenspace for λ = 5 — form A−5I

Compute

A−5I =

 0 −10 −5

2 9 2

−4 −8 1

 .

We solve (A−5I)x = 0. Form the augmented system and do row reduction.
Below we show row operations to reach RREF.
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Example

Step 2 (cont.): Row-reduction to RREF for λ = 5

Start with the coefficient matrix (A−5I) 0 −10 −5

2 9 2

−4 −8 1

 .

Perform elementary row operations (one possible path):

R1↔ R2 :

 2 9 2
0 −10 −5
−4 −8 1



R3← R3 +2R1 :

2 9 2
0 −10 −5
0 10 5


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Example

Step 2 (cont.): Row-reduction to RREF for λ = 5

R3← R3 +R2 :

2 9 2
0 −10 −5
0 0 0



Scale R1← 1
2 R1, R2←− 1

10 R2 :

1 9
2 1

0 1 1
2

0 0 0



R1← R1− 9
2 R2 ⇒

1 0 −5
4

0 1 1
2

0 0 0

 .

This is the RREF.
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Example

Step 2 (cont.): Solve for eigenvectors for λ = 5

From the RREF equations:

x1− 5
4 x3 = 0, x2 +

1
2 x3 = 0.

Let x3 = t (free). Then

x = t

 5/4

−1/2

1

= t′

 5

−2

4

 ,

where in the last expression we scaled by t′ = t/(1/4) to get integer entries.
Thus an integer-scaled eigenvector for λ = 5 is

v5 =

 5

−2

4

 ,

and the eigenspace has dimension GM(5) = 1.
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Example

Step 3: Eigenspace for λ = 10 — form A−10I

Compute

A−10I =

−5 −10 −5

2 4 2

−4 −8 −4

 .

Solve (A−10I)x = 0 by row reduction. Observe rows: R2 =−2
5 R1 and

R3 =
4
5 R1 (so only one independent equation).

Bring to RREF (a compact path):1 2 1
0 0 0
0 0 0

 .

Hence there is a single independent linear equation:

x1 +2x2 + x3 = 0.
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Example

Step 3 (cont.): Solve for eigenvectors for λ = 10

From x1 =−2x2− x3, take free parameters s = x2, t = x3. Then

x = s

−2

1

0

+ t

−1

0

1

 .

Thus two independent integer eigenvectors for λ = 10 are

v(1)10 =

−2

1

0

 , v(2)10 =

−1

0

1

 .

So GM(10) = 2, matching AM(10) = 2.
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Example

Step 4: Collect eigenvectors and check diagonalizability

We have:

λ = 5 : v5 = (5,−2,4)⊤, GM(5) = 1

λ = 10 : v(1)10 = (−2,1,0)⊤, v(2)10 = (−1,0,1)⊤, GM(10) = 2.

Total independent eigenvectors = 1+2 = 3 = n.
Therefore A is diagonalizable.
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Example

Step 5: Normalizing the eigenvectors

We now normalize each integer-scaled eigenvector (compute their Euclidean
norms and divide).

For v5 = (5,−2,4)⊤:

∥v5∥=
√

52 +(−2)2 +42 =
√

25+4+16 =
√

45.

So the unit eigenvector is

v̂5 =
1√
45

 5

−2

4

 .
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Example

Step 5: Normalizing the eigenvectors

For v(1)10 = (−2,1,0)⊤:

∥v(1)10 ∥=
√

(−2)2 +12 +02 =
√

5, v̂(1)10 =
1√
5

−2

1

0

 .

For v(2)10 = (−1,0,1)⊤:

∥v(2)10 ∥=
√

(−1)2 +02 +12 =
√

2, v̂(2)10 =
1√
2

−1

0

1

 .
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Example

Step 6: Build modal matrix P and diagonal D

If A is diagonalisable, what are P and D is A = P−1DP?

Take eigenvectors as columns (integer-scaled for P):

P =

 5 −2 −1

−2 1 0

4 0 1

 , D =

5 0 0

0 10 0

0 0 10

 .

We will compute P−1 explicitly (so the diagonalization A = PDP−1 is fully
verified).
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Example

Step 7: Compute det(P) and adjoint for P−1

First compute det(P). Expand or use standard formula; one gets

det(P) = 5.

Using the adjugate formula:

P−1 =
1

det(P)
adj(P).

We compute the matrix of cofactors (cofactor Cij = (−1)i+jMij, where Mij is
the minor).
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Example

Step 7 (cont.): Cofactors and adjoint (explicit)

Compute minors/cofactors (listed compactly):

M11 = det

(
1 0

0 1

)
= 1, C11 =+1,

M12 = det

(
−2 0

4 1

)
=−2, C12 =−(−2) = +2,

M13 = det

(
−2 1

4 0

)
=−4 =−4, C13 =+(−4) =−4,

M21 = det

(
−2 −1

0 1

)
=−2, C21 =−(−2) = +2,

Dr. D Bhanu Prakash Unit 3: Eigenvalues VFSTR, India. 27 / 33



Example

Step 7 (cont.): Cofactors and adjoint (explicit)

M22 = det

(
5 −1

4 1

)
= 5(1)− (−1)(4) = 9, C22 =+9,

M23 = det

(
5 −2

4 0

)
= 5(0)− (−2)(4) = 8, C23 =−8,

M31 = det

(
−2 −1

1 0

)
= (−2)(0)− (−1)(1) = 1, C31 =+1,

M32 = det

(
5 −1

−2 0

)
= 5(0)− (−1)(−2) =−2, C32 =−(−2) = +2,

M33 = det

(
5 −2

−2 1

)
= 5(1)− (−2)(−2) = 1, C33 =+1.
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Example

Step 7 (cont.): adjoint and P−1

The matrix of cofactors is

C =

1 2 −4

2 9 −8

1 2 1

 .

The adjoint adj(P) = C⊤ is

adj(P) =

1 2 −4

2 9 −8

1 2 1


⊤

=

 1 2 1

2 9 2

−4 −8 1

 .

Since det(P) = 5,

P−1 =
1
5
=

 1 2 1

2 9 2

−4 −8 1

 .
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Example

Step 8: Verify diagonalization P−1AP = D

Compute P−1AP. Using the matrices given:

P−1 =


1
5

2
5

1
5

2
5

9
5

2
5

−4
5 −8

5
1
5

 , P =

 5 −2 −1

−2 1 0

4 0 1

 .

Carrying out the multiplication (or verifying by direct computation) yields

P−1AP =

5 0 0

0 10 0

0 0 10

= D.

Thus A = PDP−1 and diagonalization is confirmed.
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Example

Step 9: Use — powers and Cayley–Hamilton remark

Since A is diagonalizable, Ak = PDkP−1. That reduces powering A to
powering diagonal entries 5k,10k,10k.

Cayley–Hamilton: pA(A) = (A−10I)2(A−5I) = 0. From the cubic
relation you can express high powers of A as linear combinations of
I,A,A2 or isolate an explicit formula for A−1 in terms of A2,A, I (since
constant term is nonzero).
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Example

Summary

Characteristic polynomial: pA(λ ) = (λ −10)2(λ −5).

Eigenvalues and AM: λ = 5 (AM=1), λ = 10 (AM=2).

Geometric multiplicities: GM(5) = 1, GM(10) = 2. So GM = AM for
each eigenvalue and A is diagonalizable.

Integer eigenvectors: v5 = (5,−2,4), v(1)10 = (−2,1,0), v(2)10 = (−1,0,1).
Normalized vectors shown separately.

Explicit modal matrix P, det(P) = 5, adjugate and P−1 given; verified
P−1AP = D.

Optional Topics (Not in syllabus):

Gram–Schmidt orthonormalisation process.

Singular Value Decomposition (SVD).
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Example

Thank You!
Dr. D Bhanu Prakash

dbhanuprakash233.github.io
Mail: db maths@vignan.ac.in
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