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Syllabus

1= Characteristic Equation

1= Eigenvalues, Eigenvectors and their Properties

1 Cayley-Hamilton Theorem

1= Diagonalization of a Matrix (only for diagonalizable matrices)
1= ]nverse of a matrix by Cayley-Hamilton Theorem

1= Power of a diagonalizable square matrix
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Linear Independence

Definition: Linear Independence

Aset {vi,...,vi} C R"is linearly independent if the only scalars cy,...,cx
with
cvi+-- v =0

are c; = --- = ¢; = 0. Otherwise the set is linearly dependent.
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Linear Independence

Definition: Linear Independence

Aset {vi,...,vi} C R"is linearly independent if the only scalars cy,...,cx
with
cvi+-+ave =0
are c; = --- = ¢; = 0. Otherwise the set is linearly dependent.
Quick Example (2D)

The vectors {(1,1)7,(1,—1)T} are linearly independent because the 2 x 2
matrix with these columns has nonzero determinant.
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Linear Independence

Definition: Linear Independence

Aset {vi,...,vi} C R"is linearly independent if the only scalars cy,...,cx
with
cvi+-+ave =0
are c; = --- = ¢; = 0. Otherwise the set is linearly dependent.
Quick Example (2D)

The vectors {(1,1)7,(1,—1)T} are linearly independent because the 2 x 2
matrix with these columns has nonzero determinant.

Quick Example (3D)

The vectors {(1,0,0)",(0,1,0)",(1,1,0) "} are linearly dependent (third is
sum of first two).
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Characteristic Equation and Eigenvalues

Definition: Characteristic Equation

For square A € R"*", the characteristic polynomial is

pa(A) =det(A—AI).

The scalar roots of ps(A) = 0 are the eigenvalues of A.
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Characteristic Equation and Eigenvalues

Definition: Characteristic Equation

For square A € R"*", the characteristic polynomial is
pa(A) =det(A—AI).

The scalar roots of ps(A) = 0 are the eigenvalues of A.

2 x 2 Example

2 1
LetA = L . Then det(A — AI) = (2—A4)?> — 1 = A2 — 41 + 3. Roots:

A=31.
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Eigenvectors and Properties

Definition: Eigenvector

An eigenvector x # 0 associated to eigenvalue A satisfies

(A—ADx=0.

The set of all such x (with zero) is the eigenspace Null(A — A1).
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Eigenvectors and Properties

Definition: Eigenvector

An eigenvector x # 0 associated to eigenvalue A satisfies
(A—ADx=0.

The set of all such x (with zero) is the eigenspace Null(A — A1).

Useful Properties
e Eigenvectors for distinct eigenvalues are linearly independent.

e For triangular matrices, eigenvalues are diagonal entries.

@ Sum of eigenvalues = tr(A); product = det(A).
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Algebraic Multiplicity and Geometric Multiplicity

Definitions

e Algebraic multiplicity (AM) of eigenvalue A: multiplicity of A as a root
of the characteristic polynomial ps (1) = det(A — AI).

o Geometric multiplicity (GM) of A: dimension of the eigenspace
Null(A — AT).
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-
Algebraic Multiplicity and Geometric Multiplicity

Definitions

e Algebraic multiplicity (AM) of eigenvalue A: multiplicity of A as a root
of the characteristic polynomial ps (1) = det(A — AI).

o Geometric multiplicity (GM) of A: dimension of the eigenspace
Null(A — AT).

Important facts

For each eigenvalue A,
1 <GM(A) < AM(Q).

Matrix A is diagonalizable iff the total number of linearly independent
eigenvectors equals 7 (equivalently GM(1) = AM(A) for every eigenvalue).

v
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Cayley—Hamilton Theorem

Cayley—Hamilton
If pa(A) =det(A —AI) = A"+ c,_1 A" +--- +¢o, then

pa(A) =A"+ ¢, A" p o ool = 0.
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-
Cayley—Hamilton Theorem

Cayley—Hamilton
If pa(A) =det(A —AI) = A"+ c,_1 A" +--- +¢o, then

pa(A) =A"+ ¢, A" p o ool = 0.

2x2 quick use

2 1
For A = <1 >

get expressions useful for A~! or powers.

>,pA(l) = A2 —4A + 3. Thus A% — 4A 4 31 = 0; rearrange to
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Diagonalization and Powers

Diagonalization

A is diagonalizable if there exists invertible P with P~'AP = D (diagonal).
Then A* = PD*P~! which is cheap to compute.
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Diagonalization and Powers

Diagonalization

A is diagonalizable if there exists invertible P with P~'AP = D (diagonal).
Then A* = PD*P~! which is cheap to compute.

2x2 example

A= <? ;) has eigenpairs leading to P = <} _11> ,D =diag(3,1), so

A" = Pdiag(3",1")P~!.
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Diagonalization and Powers

Diagonalization

A is diagonalizable if there exists invertible P with P~'AP = D (diagonal).
Then A* = PD*P~! which is cheap to compute.

2x2 example

A= <? ;) has eigenpairs leading to P = <} _11> ,D =diag(3,1), so

A" = Pdiag(3",1")P~!.

3%x3 remark

For a 3x3 diagonalizable matrix, the same idea applies: diagonalize and raise
diagonal entries to the kth power.
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Problem: matrix under study

We study the matrix

5 —10 -5
A=[2 14 2
4 -8 6

We will compute

° pa(A)
eigenvalues with algebraic multiplicities
eigenspaces (and their dimensions)
eigenvectors (integer-scaled and normalized)

an explicit inverse P~! of the modal matrix P

verify diagonalization
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|
Step 1: compute ps(A) = det(A — AI)

Form the matrix A — Al

Il
)
—
o
\
>
)

A—-AI
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|
Step 1: compute ps(A) = det(A — AI)

Form the matrix A — Al

5-2 -10 -5
A-Al=| 2 14-212 2
—4 -8 6-A

We compute the determinant by cofactor expansion along the first row.

14-1 2 22
det(A—M):(s—/l)det( g 61)—(—10)‘1“(4 67L>

2 14-A4
+(—5)det (_4 g ) :
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2
Step 1 (cont.)

det(A—AI)=(5—A)((14—21)(6—A)+16) +10(2(6 — 1) +38)
—5(—16+4(14—21)).
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2
Step 1 (cont.)

det(A—AI)=(5—A)((14—21)(6—A)+16) +10(2(6 — 1) +38)
—5(—16+4(14—21)).

Now expand terms carefully (expand each parenthesis and collect like powers
of A). After simplification one obtains

det(A —AI) = (A —10)*(A —5).
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2
Step 1 (cont.)

det(A—AI)=(5—A)((14—21)(6—A)+16) +10(2(6 — 1) +38)
—5(—16+4(14—21)).

Now expand terms carefully (expand each parenthesis and collect like powers
of A). After simplification one obtains

det(A — A1) = (A — 10)%(1 —5).
Hence the characteristic polynomial (up to sign) factors as

pa(A) = (A —10)>(A —5).
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Step 1 (conclusion): eigenvalues and algebraic multiplicities

From ps(A) we read:

M=5 AM(5)=1; XA =10, AM(10)=2.

Next we compute eigenspaces to find geometric multiplicities and
eigenvectors.
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N L
Step 2: Eigenspace for A =5 — form A — 51

Compute
0 —-10 -5
A-5I=| 2 9 2
-4 -8 1
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N L
Step 2: Eigenspace for A =5 — form A — 51

Compute
0 —-10 -5
A-5I=| 2 9 2
-4 -8 1

We solve (A —5I)x = 0. Form the augmented system and do row reduction.
Below we show row operations to reach RREF.
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2
Step 2 (cont.): Row-reduction to RREF for A =5

Start with the coefficient matrix (A — 51)

0 —10 -5
2 9 2
4 -8 1
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2
Step 2 (cont.): Row-reduction to RREF for A =5

Start with the coefficient matrix (A — 51)

0 —10 -5
2 9 2
4 -8 1

Perform elementary row operations (one possible path):

2 9 2
RioR:[ 0 —10 =5
—4 -8 1
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2
Step 2 (cont.): Row-reduction to RREF for A =5

Start with the coefficient matrix (A — 51)

0 —10 -5
2 9 2
4 -8 1

Perform elementary row operations (one possible path):

2 9 2
Ri<>Ry:[ 0 —10 =5
—4 -8 1

2 9 2

Ry R3+2R;: [0 —10 -5

0 10 5
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2
Step 2 (cont.): Row-reduction to RREF for A =5

2 9 2
Ri <+ R3+R: |0 —10 -5
0 O 0
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2
Step 2 (cont.): Row-reduction to RREF for A =5

2 9 2
Ri <+ R3+R: |0 —10 -5
0 0 0
1 31
Scale R < 3R|, Ry —5R2: |0 1 1
000
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2
Step 2 (cont.): Row-reduction to RREF for A =5

2 9 2
R3y<R3+R,: |0 —10 -5
0 0 0

1 31

Scale R < 3R|, Ry —5R2: |0 1 1

000
10 -2
Ri<R—3R = (01 1
00 0

This is the RREF.
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Step 2 (cont.): Solve for eigenvectors for A =5

From the RREF equations:

xl—%)@:O, XQ+%X3:0.
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N .
Step 2 (cont.): Solve for eigenvectors for A =5
From the RREF equations:

xl—%)@:O, XQ+%X3:0.

Let x3 = 1 (free). Then

5/4 5
x=t —1/2 :t/ _2 9
1 4

where in the last expression we scaled by ¢ = 7/(1/4) to get integer entries.
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N .
Step 2 (cont.): Solve for eigenvectors for A =5
From the RREF equations:
xl—%)@:O, XQ+%X3:0.

Let x3 = 1 (free). Then

5/4 5
x=t —1/2 :t/ _2 9
1 4

where in the last expression we scaled by ¢ = 7/(1/4) to get integer entries.
Thus an integer-scaled eigenvector for A = 5 is

5

and the eigenspace has dimension GM(5) = 1.
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N L
Step 3: Eigenspace for A = 10 — form A — 10/

Compute
-5 —-10 -5
A-10I=1] 2 4 2
-4 -8 —4
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N L
Step 3: Eigenspace for A = 10 — form A — 10/

Compute
-5 —-10 -5
A-10I=1] 2 4 2
-4 -8 —4

Solve (A — 107)x = 0 by row reduction.
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N L
Step 3: Eigenspace for A = 10 — form A — 10/

Compute
-5 —-10 -5
A-10I=1] 2 4 2
-4 -8 —4

Solve (A — 107)x = 0 by row reduction. Observe rows: R, = —%Rl and
R; = %R 1 (so only one independent equation).
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N L
Step 3: Eigenspace for A = 10 — form A — 10/

Compute
-5 —-10 -5
A-10I=1] 2 4 2
-4 -8 —4

Solve (A — 107)x = 0 by row reduction. Observe rows: R, = —%Rl and
R; = %R 1 (so only one independent equation).
Bring to RREF (a compact path):

S O =
S O N
S O =
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N L
Step 3: Eigenspace for A = 10 — form A — 10/

Compute
-5 —-10 -5
A-10I=1] 2 4 2
-4 -8 —4

Solve (A — 107)x = 0 by row reduction. Observe rows: R, = —%Rl and
R; = %R 1 (so only one independent equation).
Bring to RREF (a compact path):

S O =

2
0
0

S O =

Hence there is a single independent linear equation:

X1+ 2x, +x3 =0.
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Step 3 (cont.): Solve for eigenvectors for A = 10

From x; = —2x, — x3, take free parameters s = x,, t = x3. Then
-2 —1
x=s| 1 | +¢t| O
0 1
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Step 3 (cont.): Solve for eigenvectors for A = 10

From x; = —2x, — x3, take free parameters s = x,, t = x3. Then
-2 —1
x=s| 1 | +¢t| O
0 1

Thus two independent integer eigenvectors for A = 10 are

-2 -1

=[] =
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N L
Step 3 (cont.): Solve for eigenvectors for A = 10

From x; = —2x, — x3, take free parameters s = x,, t = x3. Then
-2 —1
x=s| 1 | +¢t| O
0 1

Thus two independent integer eigenvectors for A = 10 are

-2 -1

So GM(10) = 2, matching AM(10) = 2.
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N L
Step 4: Collect eigenvectors and check diagonalizability

We have:
A=5: vs=(5-2,4", GM(5)=1

A=10: ) =(=2,1,007, W& =(=1,0,n7, GM(10) =
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Step 4: Collect eigenvectors and check diagonalizability

We have:
A=5: vs=(5-2,4", GM(5)=1
A=10: ) =(=2,1,007, W& =(=1,0,n7, GM(10) =2.

Total independent eigenvectors = 1+2 =3 =n.
Therefore A is diagonalizable.
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Step 5: Normalizing the eigenvectors

We now normalize each integer-scaled eigenvector (compute their Euclidean
norms and divide).

Dr. D Bhanu Prakash Unit 3: Eigenvalues 23/33



Step 5: Normalizing the eigenvectors

We now normalize each integer-scaled eigenvector (compute their Euclidean
norms and divide).

For vs = (5,-2,4)":

sl = /52 + (202 +42 = V254 16 = V5.

So the unit eigenvector is

5
1
Ps=—— | 2
> V45 )

Dr. D Bhanu Prakash
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Step 5: Normalizing the eigenvectors
For vt = (—2,1,0)7:

1 N
vao)H =/(=2)24+124+0% = /5, "(10) _
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Step 5: Normalizing the eigenvectors
For vt = (—2,1,0)7:

ol = /(=202 + 12402 = V5,
For v%) =(-1,0,1)":

ol = /(1240212 = V2,
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(2 1
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N L
Step 6: Build modal matrix P and diagonal D

If A is diagonalisable, what are P and D is A = P~ DP?
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N L
Step 6: Build modal matrix P and diagonal D

If A is diagonalisable, what are P and D is A = P~ DP?
Take eigenvectors as columns (integer-scaled for P):

5 -2 -1 50 0
p=(-2 1 o, bp=[0o 10 0
4 0 1 0 0 10
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N L
Step 6: Build modal matrix P and diagonal D

If A is diagonalisable, what are P and D is A = P~ DP?
Take eigenvectors as columns (integer-scaled for P):

5 -2 -1 50 0
pP=|-2 of|, b=|[0o 10 o
4 0 1 0 0 10

We will compute P~! explicitly (so the diagonalization A = PDP~! is fully
verified).
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N L
Step 7: Compute det(P) and adjoint for P~!

First compute det(P). Expand or use standard formula; one gets

det(P) =5.
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N L
Step 7: Compute det(P) and adjoint for P~!

First compute det(P). Expand or use standard formula; one gets
det(P) =5.
Using the adjugate formula:

1

pl= det(P) adj(P).

We compute the matrix of cofactors (cofactor C;j = (—1)"7M;;, where M;; is
the minor).
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2
Step 7 (cont.): Cofactors and adjoint (explicit)

Compute minors/cofactors (listed compactly):

M1 = det ! =1 Ci1 =+1
=dac - 5 - 9
11 0 1 11

-2 0
( 1) = _27 C12 = _(_2) = +2>
-2 1
Mi; :det< 0) =—4=—4, C13:+(—4):—4,

-2 -1
= -2, Cr = —(—2) =42,
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2
Step 7 (cont.): Cofactors and adjoint (explicit)

(=2)0) = (=D(1) =1, C31 =+1,

500)=(=1)(=2)==2, Cu=-(-2)=+2,

5(1) = (=2)(=2) =1, Cszz3 =+1.
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N L
Step 7 (cont.): adjoint and P~

The matrix of cofactors is
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N L
Step 7 (cont.): adjoint and P~

The matrix of cofactors is

2 —4
cC=12 9 -8
1
The adjoint adj(P) = C' is
12 —4\ 12 1
adjiP)=[2 9 —8| =[2 9 2
1 2 1 -4 -8 1
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N L
Step 7 (cont.): adjoint and P~

The matrix of cofactors is

2 —4
C=12 9 -8
1
The adjoint adj(P) = C' is
12 -4\ /1 2 1
adj(P)=12 9 -8 =2 9 2
1 2 1 -4 -8 1
Since det(P) =5,
| 1 2 1
P‘lzgz 2 9 2
4 -8 1
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N L
Step 8: Verify diagonalization P~!AP = D

Compute P~!AP. Using the matrices given:

5 -2
p'=12 2 %|, P=[-2 1 0
-4 -1 4 40
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Step 8: Verify diagonalization P~!AP = D

Compute P~!AP. Using the matrices given:

Nl—= I L~

Carrying out the multiplication (or verifying by direct computation) yields

5 0 0
P'aPp=10 10 0 |=D.
0 0 10

Dr. D Bhanu Prakash Unit 3: Eigenvalues 30/33




Step 8: Verify diagonalization P~!AP = D

Compute P~!AP. Using the matrices given:

Nl—= I L~

Carrying out the multiplication (or verifying by direct computation) yields

5 0 0
P'aPp=10 10 0 |=D.
0 0 10

Thus A = PDP~! and diagonalization is confirmed.
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Step 9: Use — powers and Cayley—Hamilton remark

@ Since A is diagonalizable, AK = PD*P~!. That reduces powering A to
powering diagonal entries 5%, 10%, 10,
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Step 9: Use — powers and Cayley—Hamilton remark

@ Since A is diagonalizable, AK = PD*P~!. That reduces powering A to
powering diagonal entries 5%, 10%, 10,

e Cayley—Hamilton: p4(A) = (A — 10I)?(A — 5I) = 0. From the cubic
relation you can express high powers of A as linear combinations of
I,A,A? or isolate an explicit formula for A" in terms of A2, A, I (since
constant term is nonzero).
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Summary

@ Characteristic polynomial: pa(A) = (A —10)*(A —5).

e Eigenvalues and AM: A =5 (AM=1), A = 10 (AM=2).

e Geometric multiplicities: GM(5) = 1, GM(10) = 2. So GM = AM for
each eigenvalue and A is diagonalizable.

e Integer eigenvectors: vs = (5,—2,4), Vgo) =(-2,1,0), v%) =(-1,0,1).
Normalized vectors shown separately.

e Explicit modal matrix P, det(P) = 5, adjugate and P~ given; verified
P~'AP=D.

Optional Topics (Not in syllabus):
@ Gram-Schmidt orthonormalisation process.

@ Singular Value Decomposition (SVD).
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| can't change the direction

of the wind, but | can adjust
my sails to always reach
o my destination.

(Jimmy Dean)

Dr. D Bhanu Prakash
dbhanuprakash233.github.io
Mail: db_maths@vignan.ac.in
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