

25MT103: Linear Algebra

Unit 4: Real Vector Space

Dr. D Bhanu Prakash

Course Page: dbhanuprakash233.github.io/LA

Assistant Professor,
Department of Mathematics and Statistics.
Contact: db.maths@vignan.ac.in,
dbhanuprakash233.github.io.

Real Vector Space - Lecture Slides

Syllabus

- ☞ Real vector space
- ☞ Subspace
- ☞ Linear dependence and independence
- ☞ Linear span
- ☞ Bases and dimension
- ☞ Row space and column space of a matrix
- ☞ Determining rank of a matrix using row space and column space
- ☞ Row and column spaces of similar matrices

Outline

- 1 Vectors in a Vector Space
- 2 Linear combination of vectors
- 3 Linear span of Vectors
- 4 Linear dependence and independence
- 5 Real vector spaces
- 6 Subspaces
- 7 Bases and dimension
- 8 Row space and column space of a matrix
- 9 Summary

Outline

- 1 Vectors in a Vector Space
- 2 Linear combination of vectors
- 3 Linear span of Vectors
- 4 Linear dependence and independence
- 5 Real vector spaces
- 6 Subspaces
- 7 Bases and dimension
- 8 Row space and column space of a matrix
- 9 Summary

Vectors in a Vector Space

Definition

Let V be a real vector space over the field \mathbb{R} . The elements of V are called *vectors*. These may be:

- Ordered tuples of real numbers (e.g. $(x_1, \dots, x_n) \in \mathbb{R}^n$),
- Functions $f : \mathbb{R} \rightarrow \mathbb{R}$ (in function spaces),
- Polynomials $p(x) = a_0 + a_1x + \dots + a_nx^n$ (in polynomial spaces), or
- Matrices or sequences.

Notation

Vectors are often denoted by boldface letters (**v**, **u**) or arrows (\vec{v}), and the zero vector is written **0**.

Outline

- 1 Vectors in a Vector Space
- 2 **Linear combination of vectors**
- 3 Linear span of Vectors
- 4 Linear dependence and independence
- 5 Real vector spaces
- 6 Subspaces
- 7 Bases and dimension
- 8 Row space and column space of a matrix
- 9 Summary

Linear Combination of Vectors

Definition

A *linear combination* of vectors v_1, v_2, \dots, v_k in a vector space V is any vector of the form

$$\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k,$$

where $\alpha_i \in \mathbb{R}$ are scalars.

Problems: Linear Combination

Problem 1

Express $(3, 5)$ as a linear combination of $(1, 1)$ and $(1, 2)$.

Problems: Linear Combination

Problem 1

Express $(3, 5)$ as a linear combination of $(1, 1)$ and $(1, 2)$.

Solution

We need $a(1, 1) + b(1, 2) = (3, 5)$.

$$a + b = 3$$

$$a + 2b = 5.$$

Subtract first from second: $b = 2$, hence $a = 1$. So $(3, 5) = 1(1, 1) + 2(1, 2)$.

Problems: Linear Combination

Problem 2

Check if $(2, 4, 6)$ is a linear combination of $(1, 0, 1)$, $(0, 1, 1)$.

Problems: Linear Combination

Problem 2

Check if $(2, 4, 6)$ is a linear combination of $(1, 0, 1)$, $(0, 1, 1)$.

Solution

We need $a(1, 0, 1) + b(0, 1, 1) = (2, 4, 6)$ giving $a = 2$, $b = 4$, and $a + b = 6$ which holds. Hence yes.

Outline

- 1 Vectors in a Vector Space
- 2 Linear combination of vectors
- 3 Linear span of Vectors**
- 4 Linear dependence and independence
- 5 Real vector spaces
- 6 Subspaces
- 7 Bases and dimension
- 8 Row space and column space of a matrix
- 9 Summary

Linear Span

Definition

For a subset $S \subset V$, the *span* of S is

$$\text{span}(S) = \{ \alpha_1 v_1 + \cdots + \alpha_k v_k \mid k \in \mathbb{N}, v_i \in S, \alpha_i \in \mathbb{R} \}.$$

It is the smallest subspace containing S .

Problems: Span

Problem 1

Find $\text{span}\{(1, 2, 3), (2, 4, 6)\}$ in \mathbb{R}^3 .

Problems: Span

Problem 1

Find $\text{span}\{(1, 2, 3), (2, 4, 6)\}$ in \mathbb{R}^3 .

Solution

Note $(2, 4, 6) = 2(1, 2, 3)$ so the span is all multiples of $(1, 2, 3)$, i.e. a 1-dimensional subspace $\{t(1, 2, 3) \mid t \in \mathbb{R}\}$.

Problem 2

Does $\text{span}\{(1, 0, 1), (0, 1, 1)\}$ equal \mathbb{R}^3 ?

Problems: Span

Problem 1

Find $\text{span}\{(1, 2, 3), (2, 4, 6)\}$ in \mathbb{R}^3 .

Solution

Note $(2, 4, 6) = 2(1, 2, 3)$ so the span is all multiples of $(1, 2, 3)$, i.e. a 1-dimensional subspace $\{t(1, 2, 3) \mid t \in \mathbb{R}\}$.

Problem 2

Does $\text{span}\{(1, 0, 1), (0, 1, 1)\}$ equal \mathbb{R}^3 ?

Solution

We need to check if an arbitrary (x, y, z) can be written as $a(1, 0, 1) + b(0, 1, 1) = (a, b, a+b)$. This yields $x = a$, $y = b$, and $z = a+b = x+y$. So (x, y, z) is in the span iff $z = x+y$. Thus the span is the plane $\{(x, y, z) : z = x+y\}$, not all \mathbb{R}^3 .

3D Visual

Link

<https://trkern.github.io/span3.html>

Outline

- 1 Vectors in a Vector Space
- 2 Linear combination of vectors
- 3 Linear span of Vectors
- 4 **Linear dependence and independence**
- 5 Real vector spaces
- 6 Subspaces
- 7 Bases and dimension
- 8 Row space and column space of a matrix
- 9 Summary

Linear Dependence / Independence

Definition

A finite set $\{v_1, \dots, v_k\}$ in V is *linearly dependent* if there exist scalars $\alpha_1, \dots, \alpha_k$, not all zero, such that

$$\alpha_1 v_1 + \dots + \alpha_k v_k = 0.$$

If the only solution is $\alpha_1 = \dots = \alpha_k = 0$, the set is *linearly independent*.

Linear Dependence / Independence

Definition

A finite set $\{v_1, \dots, v_k\}$ in V is *linearly dependent* if there exist scalars $\alpha_1, \dots, \alpha_k$, not all zero, such that

$$\alpha_1 v_1 + \dots + \alpha_k v_k = 0.$$

If the only solution is $\alpha_1 = \dots = \alpha_k = 0$, the set is *linearly independent*.

Important properties

- Any set containing the zero vector is linearly dependent.
- Any subset of a linearly independent set is independent.
- If $k > \dim V$, any list of k vectors is dependent.

Problems: Dependence / Independence

Problem 1

Determine if the vectors $(1, 2, 3)$, $(0, 1, 2)$, and $(1, 3, 5)$ in \mathbb{R}^3 are linearly independent.

Problems: Dependence / Independence

Problem 1

Determine if the vectors $(1, 2, 3)$, $(0, 1, 2)$, and $(1, 3, 5)$ in \mathbb{R}^3 are linearly independent.

Solution

Solve $a(1, 2, 3) + b(0, 1, 2) + c(1, 3, 5) = (0, 0, 0)$. This gives the system:

$$a + 0b + c = 0$$

$$2a + b + 3c = 0$$

$$3a + 2b + 5c = 0.$$

From first: $c = -a$. Substitute into second: $2a + b + 3(-a) = 2a + b - 3a = -a + b = 0 \Rightarrow b = a$. Third: $3a + 2b + 5c = 3a + 2a + 5(-a) = 0$ — always satisfied. So $b = a, c = -a$; nontrivial solution exists (take $a = 1$ gives $(1, 1, -1)$). Thus dependent.

Problems: Dependence / Independence

Problem 2

Show that the set $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ is linearly independent in \mathbb{R}^3 .

Problems: Dependence / Independence

Problem 2

Show that the set $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ is linearly independent in \mathbb{R}^3 .

Solution

Solve $a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = 0$. This yields $a = b = c = 0$. Hence independent.

Question 1

Does any collection of vectors become a vector space?

Question 2

What is the difference between a set and a space?

Question 2

What is the difference between a set and a space?

Solution

- A **set** is simply a collection of distinct elements with no additional structure.
- A **space** is a set *with structure* — meaning we define extra operations or relations on it.

Examples:

- Set: $\{1, 2, 3, 4\}$ (no structure)
- Vector Space: \mathbb{R}^2 under usual addition and scalar multiplication
- Metric Space: (\mathbb{R}, d) where $d(x, y) = |x - y|$

Conclusion: Every space is a set, but not every set is a space.

Question 1

Does any collection of vectors become a vector space?

Question 1

Does any collection of vectors become a vector space?

Solution

No. Not every collection of vectors forms a vector space. To be a vector space, a set must satisfy all the **vector space axioms**, including:

- Closure under addition and scalar multiplication
- Existence of a zero vector
- Existence of additive inverses
- Associativity and commutativity of addition
- Distributive and scalar associative laws

If even one property fails, the collection is **not** a vector space.

Outline

- 1 Vectors in a Vector Space
- 2 Linear combination of vectors
- 3 Linear span of Vectors
- 4 Linear dependence and independence
- 5 **Real vector spaces**
- 6 Subspaces
- 7 Bases and dimension
- 8 Row space and column space of a matrix
- 9 Summary

Real Vector Space

Definition

A *real vector space* V is a set together with two operations: vector addition $+: V \times V \rightarrow V$ and scalar multiplication $\cdot : \mathbb{R} \times V \rightarrow V$, such that the following axioms hold for all $u, v, w \in V$ and $\alpha, \beta \in \mathbb{R}$:

- ① $u + v = v + u$ (commutativity),
- ② $(u + v) + w = u + (v + w)$ (associativity),
- ③ There exists $0 \in V$ with $v + 0 = v$ for all v (Additive identity)
- ④ each v has an additive inverse $-v$,
- ⑤ $\alpha(v + w) = \alpha v + \alpha w$ (Distributivity)
- ⑥ $(\alpha + \beta)v = \alpha v + \beta v$ (Distributivity)
- ⑦ $(\alpha\beta)v = \alpha(\beta v)$
- ⑧ $1 \cdot v = v$.

Important properties

- The zero vector is unique.
- $0 \cdot v = \mathbf{0}$ and $\alpha \cdot \mathbf{0} = \mathbf{0}$ for all α .
- $(-1)v = -v$.

Example

\mathbb{R}^n with usual addition and scalar multiplication.

Example

\mathbb{R}^n with usual addition and scalar multiplication.

Solution

- Vectors in \mathbb{R}^n can be added:
$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
- Scalars multiply vectors: $c(x_1, x_2, \dots, x_n) = (cx_1, cx_2, \dots, cx_n)$
- All vector space axioms hold (closure, zero vector, inverses, etc.)

Hence, \mathbb{R}^n is the most familiar example of a vector space.

Counter Example

Give an example of a set that is *not* a vector space.

Counter Example

Give an example of a set that is *not* a vector space.

Set

Let $S = \{(x, y) \in \mathbb{R}^2 : x \geq 0, y \geq 0\}$

Counter Example

Give an example of a set that is *not* a vector space.

Set

Let $S = \{(x, y) \in \mathbb{R}^2 : x \geq 0, y \geq 0\}$

Solution

- S is closed under addition.
- But not closed under scalar multiplication: for scalar -1 ,
 $-1 \cdot (1, 1) = (-1, -1) \notin S$.

Hence, S is not a vector space.

Example

Can the set of all polynomials with usual addition and scalar multiplication be a vector space?

Example

Can the set of all polynomials with usual addition and scalar multiplication be a vector space?

Solution

The set of all real polynomials, denoted $\mathcal{P} = \{a_0 + a_1x + a_2x^2 + \dots\}$, is a vector space over \mathbb{R} because:

- Sum of two polynomials is a polynomial.
- Scalar multiple of a polynomial is a polynomial.
- There exists a zero polynomial (0).

Thus, \mathcal{P} satisfies all vector space axioms.

Example

Give a counterexample — a set of polynomials that is *not* a vector space.

Example

Give a counterexample — a set of polynomials that is *not* a vector space.

Solution

Let $S = \{p(x) \in \mathcal{P} : p(0) = 1\}$

- For $p(x), q(x) \in S$, $(p + q)(0) = p(0) + q(0) = 2 \neq 1$
- So S is **not closed** under addition

Hence, S is **not** a vector space.

Example

Verify that the set $W = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ is continuous}\}$ is a real vector space with pointwise addition and scalar multiplication.

Example

Verify that the set $W = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ is continuous}\}$ is a real vector space with pointwise addition and scalar multiplication.

Solution

- ➊ Sum of continuous functions is continuous (standard result). Hence closed under addition.
- ➋ Scalar multiple of continuous function is continuous. Hence closed under scalar multiplication.
- ➌ All axioms (associativity, distributivity, etc.) hold because they hold for real-valued functions pointwise. Therefore W is a real vector space.

Examples of Vector Spaces:

- $\mathbb{R}^n, \mathbb{C}^n$
- All polynomials
- All continuous functions $C[a, b]$

Counterexamples:

- $\{(x, y) \in \mathbb{R}^2 : x \geq 0, y \geq 0\}$
- $\{p(x) : p(0) = 1\}$

Summary

How do we check if something is a vector space?

Answer: Verify the following 10 axioms (for addition and scalar multiplication):

- ① Closure under addition
- ② Commutativity of addition
- ③ Associativity of addition
- ④ Existence of additive identity
- ⑤ Existence of additive inverse
- ⑥ Closure under scalar multiplication
- ⑦ Distributive property (scalar over vectors)
- ⑧ Distributive property (vector over scalars)
- ⑨ Compatibility of scalar multiplication
- ⑩ Existence of multiplicative identity

If all hold — it's a vector space!

Outline

- 1 Vectors in a Vector Space
- 2 Linear combination of vectors
- 3 Linear span of Vectors
- 4 Linear dependence and independence
- 5 Real vector spaces
- 6 **Subspaces**
- 7 Bases and dimension
- 8 Row space and column space of a matrix
- 9 Summary

Subspace

Definition

A subset U of a vector space V is a *subspace* if U is itself a vector space under the operations inherited from V . Equivalently, U is nonempty and closed under addition and scalar multiplication.

Important properties

- Intersection of subspaces is a subspace.
- Sum $U + W = \{u + w \mid u \in U, w \in W\}$ is the smallest subspace containing $U \cup W$.

Problems: Subspaces

Problem 1

Let $U = \{(x, x, 0) \mid x \in \mathbb{R}\} \subset \mathbb{R}^3$. Show U is a subspace.

Problems: Subspaces

Problem 1

Let $U = \{(x, x, 0) \mid x \in \mathbb{R}\} \subset \mathbb{R}^3$. Show U is a subspace.

Solution

- ① Nonempty: $(0, 0, 0) \in U$.
- ② Closed under addition: $(x, x, 0) + (y, y, 0) = (x+y, x+y, 0) \in U$.
- ③ Closed under scalars: $\alpha(x, x, 0) = (\alpha x, \alpha x, 0) \in U$.
- ④ So U is a subspace.

Problems: Subspaces

Problem 2

Is the set $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ a subspace of \mathbb{R}^3 ?

Problems: Subspaces

Problem 2

Is the set $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ a subspace of \mathbb{R}^3 ?

Solution

This set is the unit sphere. It does not contain the zero vector, and it's not closed under scalar multiplication (e.g. $2 \cdot (1, 0, 0) = (2, 0, 0)$ not in S). Hence not a subspace.

Problem

Let $V = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$. Show V is a real vector space (subspace of \mathbb{R}^3).

Problem

Let $V = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$. Show V is a real vector space (subspace of \mathbb{R}^3).

Solution

① Check closure under addition: take $u = (x_1, y_1, z_1)$ and $v = (x_2, y_2, z_2)$ with sums zero. Then

$$(x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2) = (x_1 + y_1 + z_1) + (x_2 + y_2 + z_2) = 0 + 0 = 0,$$

so $u + v \in V$.

② Check closure under scalar multiplication: for $\alpha \in \mathbb{R}$,

$$\alpha x + \alpha y + \alpha z = \alpha(x + y + z) = \alpha \cdot 0 = 0,$$

so $\alpha v \in V$.

③ Nonempty: $(1, -1, 0) \in V$, so $V \neq \emptyset$. Thus V is a subspace and hence a real vector space.

Outline

- 1 Vectors in a Vector Space
- 2 Linear combination of vectors
- 3 Linear span of Vectors
- 4 Linear dependence and independence
- 5 Real vector spaces
- 6 Subspaces
- 7 Bases and dimension**
- 8 Row space and column space of a matrix
- 9 Summary

Bases and Dimension

Definition

A *basis* of a vector space V is a list of vectors that is linearly independent and spans V . The *dimension* of V , $\dim V$, is the number of vectors in any basis (if finite).

Bases and Dimension

Definition

A *basis* of a vector space V is a list of vectors that is linearly independent and spans V . The *dimension* of V , $\dim V$, is the number of vectors in any basis (if finite).

Important properties

- Every finite-dimensional vector space has a basis.
- All bases of a finite-dimensional vector space have the same number of elements.
- If $\dim V = n$, any list of n independent vectors is a basis; any spanning list with n vectors is a basis.

Problems: Bases and Dimension

Problem 1

Find a basis and dimension of $V = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$.

Problems: Bases and Dimension

Problem 1

Find a basis and dimension of $V = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$.

Solution

Solve $x = -2y - 3z$. Then vectors are $(x, y, z) = y(-2, 1, 0) + z(-3, 0, 1)$. So $V = \text{span}\{(-2, 1, 0), (-3, 0, 1)\}$. Check independence: only trivial combination gives zero (quick determinant or reasoning), hence they form a basis. Dimension = 2.

Problems: Bases and Dimension

Problem 2

Show that any two bases of a finite-dimensional vector space have the same number of elements.

Problems: Bases and Dimension

Problem 2

Show that any two bases of a finite-dimensional vector space have the same number of elements.

Solution

Let B and B' be bases. Since B' spans, each vector of B is a linear combination of B' . Using the exchange lemma one shows $|B| \leq |B'|$. By symmetry $|B'| \leq |B|$. So $|B| = |B'|$.

Outline

- 1 Vectors in a Vector Space
- 2 Linear combination of vectors
- 3 Linear span of Vectors
- 4 Linear dependence and independence
- 5 Real vector spaces
- 6 Subspaces
- 7 Bases and dimension
- 8 Row space and column space of a matrix**
- 9 Summary

Row space and Column space

Definitions

For a matrix $A \in \mathbb{R}^{m \times n}$:

- The *row space* $\mathcal{R}(A)$ is the subspace of \mathbb{R}^n spanned by the rows of A (viewed as row vectors).
- The *column space* $\mathcal{C}(A)$ is the subspace of \mathbb{R}^m spanned by the columns of A .
- The *rank* of A , $\text{rank}(A)$, is $\dim \mathcal{R}(A) = \dim \mathcal{C}(A)$.

Row space and Column space

Definitions

For a matrix $A \in \mathbb{R}^{m \times n}$:

- The *row space* $\mathcal{R}(A)$ is the subspace of \mathbb{R}^n spanned by the rows of A (viewed as row vectors).
- The *column space* $\mathcal{C}(A)$ is the subspace of \mathbb{R}^m spanned by the columns of A .
- The *rank* of A , $\text{rank}(A)$, is $\dim \mathcal{R}(A) = \dim \mathcal{C}(A)$.

Important properties

- Row reductions (elementary row operations) do not change the row space (they change which rows generate it) or the row rank; column operations change column space.
- Row rank equals column rank (fundamental theorem of linear algebra).

Problems: Row/Column Space and Rank

Problem 1

Find the row space, column space and rank of

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix}.$$

Solution

Row-reduce A :

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{R_2-2R_1, R_3-R_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & -1 & -2 \end{pmatrix}$$

Problems: Row/Column Space and Rank

Solution

Swap rows $R_2 \leftrightarrow R_3$ and scale $R_2 \rightarrow -R_2$:

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

- Pivots in columns 1 and 2. Rank = 2.
- Row space: span of pivot rows $\{(1, 2, 3), (0, 1, 2)\}$.
- Column space: span of $\{c1 = (1, 2, 1), c2 = (2, 4, 1), c3 = (3, 6, 1)\}$.

Problems: Row/Column Space and Rank

Problem 2

Compute rank of $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 3 & 7 \end{pmatrix}$.

Problems: Row/Column Space and Rank

Problem 2

Compute rank of $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 3 & 7 \end{pmatrix}$.

Solution

Row reduce:

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 3 & 7 \end{pmatrix} \xrightarrow{R_3 - 2R_1} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 3 & 3 \end{pmatrix} \xrightarrow{R_3 - 3R_2} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & -6 \end{pmatrix}.$$

All three pivots; rank = 3.

Row and Column Spaces of Similar Matrices

Statement

If A and B are similar matrices ($B = P^{-1}AP$ for invertible P), then $\text{rank}(A) = \text{rank}(B)$ and the row/column spaces are isomorphic via the change of basis given by P .

Important properties

- Similarity represents the same linear operator in different bases, so invariant properties like rank, determinant, trace, eigenvalues (multiset) are preserved.

Problem: Similar Matrices

Problem 1

Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Compute $B = P^{-1}AP$ and compare ranks and column spaces.

Problem: Similar Matrices

Problem 1

Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Compute $B = P^{-1}AP$ and compare ranks and column spaces.

Solution

Compute $P^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Then

$$B = P^{-1}AP = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = A.$$

Here $B = A$, ranks and column spaces identical. (This choice of P centralizes A .)

Problem: Similar Matrices

Problem 2

Explain why rank is invariant under similarity.

Problem: Similar Matrices

Problem 2

Explain why rank is invariant under similarity.

Solution

$B = P^{-1}AP$. Multiplication by invertible matrices on left/right corresponds to applying invertible linear maps to row/column spaces, which preserves dimensions. Hence rank preserved.

Outline

- 1 Vectors in a Vector Space
- 2 Linear combination of vectors
- 3 Linear span of Vectors
- 4 Linear dependence and independence
- 5 Real vector spaces
- 6 Subspaces
- 7 Bases and dimension
- 8 Row space and column space of a matrix
- 9 Summary

Summary and Takeaways

- Vector spaces, subspaces: the foundational language.
- Linear dependence/independence, span, bases, dimension — tightly interconnected.
- Row/column spaces and rank are central in matrix theory; rank preserved under similarity.

Thank You!

Dr. D Bhanu Prakash

dbhanuprakash233.github.io

Mail: db_maths@vignan.ac.in

I can't change the direction
of the wind, but I can adjust
my sails to always reach
my destination.

(Jimmy Dean)

