

25MT103: Linear Algebra

Unit 4: Real Vector Space

Dr. D Bhanu Prakash

Course Page: dbhanuprakash233.github.io/LA

Assistant Professor,
Department of Mathematics and Statistics.
Contact: db.maths@vignan.ac.in.
dbhanuprakash233.github.io.

Real Vector Space - Tutorial

Linear Dependence and Span

- ① Determine if the vectors $(1, 2, 3)$, $(2, 4, 6)$, and $(0, 1, 1)$ are linearly independent.
- ② Find $\text{span}\{(1, 0, 0), (0, 1, 0)\}$ in \mathbb{R}^3 .
- ③ Express $(3, 3)$ as a linear combination of $(1, 1)$ and $(1, 2)$.
- ④ Determine if $(2, 4, 3)$ belongs to the span of $\{(1, 0, 1), (0, 1, 1)\}$.

Vector Spaces and Subspaces

1 Determine if the following sets are subspaces. If so, calculate the basis and dimension.

- 1 $V = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 0\}$
- 2 $W = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f(0) = 0\}$
- 3 $W = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f(0) = 1\}$
- 4 $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}$
- 5 $W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$
- 6 $V = \{p(x) \in P_3 : p(1) = 0\}$

2 Determine if the set of all symmetric 2×2 matrices forms a subspace of $\mathbb{R}^{2 \times 2}$.

Bases and Dimension

11. Find a basis for the null space of $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$.
12. Find a basis of P_2 (polynomials of degree ≤ 2) and compute coordinates of $p(x) = 1 + 2x + x^2$ relative to that basis.
13. Find bases for the row space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{bmatrix}.$$

14. Given

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix},$$

verify whether A and B are similar and compare their ranks and eigenvalues.

15. Find the dimension of the space of 2×2 symmetric matrices.

Null Space, Orthogonal Projections, and Rank–Nullity

① Compute the null space of

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \end{bmatrix}.$$

Also verify the Rank–Nullity Theorem.

② Find the orthogonal projection of $b = (2, 3, 4)^T$ onto the subspace spanned by

$$v_1 = (1, 0, 0)^T, \quad v_2 = (1, 1, 0)^T.$$

③ Prove that $\text{Col}(A)$ and $\text{Nul}(A^T)$ are orthogonal complements in \mathbb{R}^m .

④ Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be defined by $T(x, y) = (x + 2y, 3x + y)$. Find its matrix representation and determine if T is invertible.

Hints and Key Steps

For deeper practice:

- Always verify closure under vector operations.
- When finding spans, solve $a_1v_1 + \cdots + a_kv_k = w$ for w .

Thank You!

Dr. D Bhanu Prakash

dbhanuprakash233.github.io

Mail: db_maths@vignan.ac.in

I can't change the direction
of the wind, but I can adjust
my sails to always reach
my destination.

(Jimmy Dean)

