

25MT103: Linear Algebra

Unit 5: Real Inner Product Space

Dr. D Bhanu Prakash

Course Page: dbhanuprakash233.github.io/LA

Assistant Professor,
Department of Mathematics and Statistics.
Contact: db.maths@vignan.ac.in.
dbhanuprakash233.github.io.

Real Inner Product Space - Lecture Slides

Syllabus

- ☞ Real inner product space
- ☞ Norm of a vector
- ☞ Orthogonal set
- ☞ Orthonormal set
- ☞ Cauchy-Schwarz inequality
- ☞ Gram-Schmidt orthogonalization process.
- ☞ QR decomposition
- ☞ Singular Value Decomposition (SVD).

Outline

- 1 Real inner product space
- 2 Norm of a vector, Orthogonal and Orthonormal sets
- 3 Cauchy-Schwarz Inequality
- 4 Gram-Schmidt orthogonalization
- 5 Applications: QR and SVD

Outline

- 1 Real inner product space
- 2 Norm of a vector, Orthogonal and Orthonormal sets
- 3 Cauchy-Schwarz Inequality
- 4 Gram-Schmidt orthogonalization
- 5 Applications: QR and SVD

Real Inner Product Space

Definition

A *real inner product space* is a real vector space V with an operation $\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{R}$ satisfying for all $u, v, w \in V$ and $\alpha \in \mathbb{R}$:

- ① $\langle u, v \rangle = \langle v, u \rangle$ (symmetry)
- ② $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ (linearity in first argument)
- ③ $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$
- ④ $\langle v, v \rangle \geq 0$ and $\langle v, v \rangle = 0$ iff $v = 0$.

Properties

- $\|v\| = \sqrt{\langle v, v \rangle}$ defines a norm.
- $\langle u, v \rangle = \|u\| \|v\| \cos \theta$ defines angle between u and v .

Problems: Inner Product

Problem 1

In \mathbb{R}^3 , verify that $\langle (1, 2, 3), (4, 5, 6) \rangle = 32$ using the standard inner product.

Problems: Inner Product

Problem 1

In \mathbb{R}^3 , verify that $\langle (1, 2, 3), (4, 5, 6) \rangle = 32$ using the standard inner product.

Solution

Standard inner product: $\langle u, v \rangle = u_1v_1 + u_2v_2 + u_3v_3$. Thus:

$$1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 4 + 10 + 18 = 32.$$

Problem 2

Check if $(1, 2, 3)$ and $(2, 4, 6)$ are orthogonal in \mathbb{R}^3 .

Problems: Inner Product

Problem 1

In \mathbb{R}^3 , verify that $\langle (1, 2, 3), (4, 5, 6) \rangle = 32$ using the standard inner product.

Solution

Standard inner product: $\langle u, v \rangle = u_1v_1 + u_2v_2 + u_3v_3$. Thus:

$$1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 4 + 10 + 18 = 32.$$

Problem 2

Check if $(1, 2, 3)$ and $(2, 4, 6)$ are orthogonal in \mathbb{R}^3 .

Solution

Compute $\langle (1, 2, 3), (2, 4, 6) \rangle = 1 \cdot 2 + 2 \cdot 4 + 3 \cdot 6 = 2 + 8 + 18 = 28 \neq 0$.

Hence not orthogonal.

Outline

- 1 Real inner product space
- 2 Norm of a vector, Orthogonal and Orthonormal sets
- 3 Cauchy-Schwarz Inequality
- 4 Gram-Schmidt orthogonalization
- 5 Applications: QR and SVD

Norm, Orthogonal and Orthonormal Sets

Definitions

- The *norm* of v is $\|v\| = \sqrt{\langle v, v \rangle}$.
- Vectors u, v are *orthogonal* if $\langle u, v \rangle = 0$.
- A set $\{v_1, \dots, v_k\}$ is *orthogonal* if all distinct pairs are orthogonal.
- It is *orthonormal* if it is orthogonal and each $\|v_i\| = 1$.

Norm, Orthogonal and Orthonormal Sets

Definitions

- The *norm* of v is $\|v\| = \sqrt{\langle v, v \rangle}$.
- Vectors u, v are *orthogonal* if $\langle u, v \rangle = 0$.
- A set $\{v_1, \dots, v_k\}$ is *orthogonal* if all distinct pairs are orthogonal.
- It is *orthonormal* if it is orthogonal and each $\|v_i\| = 1$.

Properties

- An orthogonal set of nonzero vectors is linearly independent.
- Any vector in the span of an orthonormal set can be expressed as $v = \sum \langle v, v_i \rangle v_i$.

Problems: Orthogonality and Norm

Problem 1

Find $\|v\|$ for $v = (3, 4)$.

Problems: Orthogonality and Norm

Problem 1

Find $\|v\|$ for $v = (3, 4)$.

Solution

$$\|v\| = \sqrt{3^2 + 4^2} = 5.$$

Problem 2

Check if $(1, -1, 0)$, $(1, 1, 0)$ are orthogonal.

Problems: Orthogonality and Norm

Problem 1

Find $\|v\|$ for $v = (3, 4)$.

Solution

$$\|v\| = \sqrt{3^2 + 4^2} = 5.$$

Problem 2

Check if $(1, -1, 0)$, $(1, 1, 0)$ are orthogonal.

Solution

Inner product $= 1 \cdot 1 + (-1) \cdot 1 + 0 \cdot 0 = 0$. Thus orthogonal.

Outline

- 1 Real inner product space
- 2 Norm of a vector, Orthogonal and Orthonormal sets
- 3 **Cauchy-Schwarz Inequality**
- 4 Gram-Schmidt orthogonalization
- 5 Applications: QR and SVD

Cauchy-Schwarz Inequality

Statement

For all u, v in a real inner product space,

$$|\langle u, v \rangle| \leq \|u\| \|v\|,$$

with equality iff u and v are linearly dependent.

Cauchy-Schwarz Inequality

Statement

For all u, v in a real inner product space,

$$|\langle u, v \rangle| \leq \|u\| \|v\|,$$

with equality iff u and v are linearly dependent.

Proof sketch

Consider $f(t) = \|u - tv\|^2 \geq 0$ for all t . Expand:

$$f(t) = \langle u, u \rangle - 2t\langle u, v \rangle + t^2\langle v, v \rangle.$$

The discriminant ≤ 0 gives the inequality.

Problems: Cauchy-Schwarz

Problem 1

Verify the inequality for $u = (1, 2)$, $v = (2, 1)$.

Problems: Cauchy-Schwarz

Problem 1

Verify the inequality for $u = (1, 2)$, $v = (2, 1)$.

Solution

$\langle u, v \rangle = 1 \cdot 2 + 2 \cdot 1 = 4$, $\|u\| = \sqrt{5}$, $\|v\| = \sqrt{5}$. So $|\langle u, v \rangle| = 4 \leq 5 = \|u\| \|v\|$.
Verified.

Problem 2

When does equality hold?

Problems: Cauchy-Schwarz

Problem 1

Verify the inequality for $u = (1, 2)$, $v = (2, 1)$.

Solution

$\langle u, v \rangle = 1 \cdot 2 + 2 \cdot 1 = 4$, $\|u\| = \sqrt{5}$, $\|v\| = \sqrt{5}$. So $|\langle u, v \rangle| = 4 \leq 5 = \|u\| \|v\|$.
Verified.

Problem 2

When does equality hold?

Solution

Equality iff one vector is scalar multiple of the other, i.e. $u = \lambda v$.

Outline

- 1 Real inner product space
- 2 Norm of a vector, Orthogonal and Orthonormal sets
- 3 Cauchy-Schwarz Inequality
- 4 Gram-Schmidt orthogonalization
- 5 Applications: QR and SVD

Gram-Schmidt Process

Procedure

Given linearly independent vectors v_1, \dots, v_n in inner product space V , produce orthonormal set u_1, \dots, u_n :

$$u_1 = \frac{v_1}{\|v_1\|},$$

$$u'_2 = v_2 - \langle v_2, u_1 \rangle u_1, \quad u_2 = \frac{u'_2}{\|u'_2\|},$$

$$u'_k = v_k - \sum_{j=1}^{k-1} \langle v_k, u_j \rangle u_j, \quad u_k = \frac{u'_k}{\|u'_k\|}.$$

Gram-Schmidt Process

Procedure

Given linearly independent vectors v_1, \dots, v_n in inner product space V , produce orthonormal set u_1, \dots, u_n :

$$u_1 = \frac{v_1}{\|v_1\|},$$

$$u'_2 = v_2 - \langle v_2, u_1 \rangle u_1, \quad u_2 = \frac{u'_2}{\|u'_2\|},$$

$$u'_k = v_k - \sum_{j=1}^{k-1} \langle v_k, u_j \rangle u_j, \quad u_k = \frac{u'_k}{\|u'_k\|}.$$

Properties

- Output set is orthonormal and spans same subspace as input.
- Stable under scaling and order of orthogonalization.

Problems: Gram-Schmidt

Problem 1

Apply Gram-Schmidt to $(1, 1, 0)$ and $(1, 0, 1)$.

Problems: Gram-Schmidt

Problem 1

Apply Gram-Schmidt to $(1, 1, 0)$ and $(1, 0, 1)$.

Solution

Let $v_1 = (1, 1, 0)$, $v_2 = (1, 0, 1)$.

$$u_1 = \frac{(1, 1, 0)}{\sqrt{2}},$$

$$u'_2 = (1, 0, 1) - \langle (1, 0, 1), u_1 \rangle u_1 = (1, 0, 1) - \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} (1, 1, 0) = (1/2, -1/2, 1).$$

$$u_2 = \frac{u'_2}{\|u'_2\|} = \frac{(1/2, -1/2, 1)}{\sqrt{(1/2)^2 + (-1/2)^2 + 1^2}} = \frac{(1/2, -1/2, 1)}{\sqrt{3/2}}.$$

Outline

- 1 Real inner product space
- 2 Norm of a vector, Orthogonal and Orthonormal sets
- 3 Cauchy-Schwarz Inequality
- 4 Gram-Schmidt orthogonalization
- 5 Applications: QR and SVD

QR Decomposition

Definition

Any real matrix $A \in \mathbb{R}^{m \times n}$ with linearly independent columns can be decomposed as

$$A = QR,$$

where Q has orthonormal columns ($Q^T Q = I$) and R is upper triangular. This is the *QR decomposition*.

QR Decomposition

Definition

Any real matrix $A \in \mathbb{R}^{m \times n}$ with linearly independent columns can be decomposed as

$$A = QR,$$

where Q has orthonormal columns ($Q^T Q = I$) and R is upper triangular. This is the *QR decomposition*.

Computation

Gram-Schmidt on columns of A gives $Q; R = Q^T A$.

Problems: QR Decomposition

Problem

Find the QR decomposition of $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Problems: QR Decomposition

Problem

Find the QR decomposition of $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Solution

Columns: $a_1 = (1, 0, 1)$, $a_2 = (1, 1, 0)$.

$$q_1 = a_1 / \|a_1\| = (1, 0, 1) / \sqrt{2},$$

$$\text{proj}_{q_1}(a_2) = \langle a_2, q_1 \rangle q_1 = (1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1) / \sqrt{2} \cdot (1, 0, 1) / \sqrt{2} = (1/2)(1, 0, 1),$$

$$u'_2 = a_2 - \text{proj}_{q_1}(a_2) = (1, 1, 0) - (1/2, 0, 1/2) = (1/2, 1, -1/2),$$

$$q_2 = u'_2 / \|u'_2\|.$$

$$R = Q^T A.$$

Singular Value Decomposition (SVD)

Definition

For any $A \in \mathbb{R}^{m \times n}$, there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$, and a diagonal matrix Σ with nonnegative entries (singular values) such that

$$A = U\Sigma V^T.$$

Singular Value Decomposition (SVD)

Definition

For any $A \in \mathbb{R}^{m \times n}$, there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$, and a diagonal matrix Σ with nonnegative entries (singular values) such that

$$A = U\Sigma V^T.$$

Properties

- Columns of U are eigenvectors of AA^T ; columns of V are eigenvectors of A^TA .
- Singular values σ_i are square roots of eigenvalues of A^TA .

Problems: SVD

Problem 1

Find singular values of $A = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$.

Problems: SVD

Problem 1

Find singular values of $A = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$.

Solution

Compute $A^T A = \begin{pmatrix} 9 & 0 \\ 0 & 16 \end{pmatrix}$. Eigenvalues = 9, 16. Singular values are $\sqrt{9} = 3$, $\sqrt{16} = 4$.

Problem 2

Explain significance of SVD.

Problems: SVD

Problem 1

Find singular values of $A = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$.

Solution

Compute $A^T A = \begin{pmatrix} 9 & 0 \\ 0 & 16 \end{pmatrix}$. Eigenvalues = 9, 16. Singular values are $\sqrt{9} = 3$, $\sqrt{16} = 4$.

Problem 2

Explain significance of SVD.

Solution

SVD expresses linear transformations as rotations/reflections and scalings. Useful in PCA, signal compression, and least squares.

Summary

- Linear combination, inner product, and orthogonality form the core of Euclidean geometry in vector spaces.
- Gram-Schmidt leads to QR decomposition.
- SVD generalizes orthogonal diagonalization for all matrices.

Thank You!

Dr. D Bhanu Prakash
dbhanuprakash233.github.io
Mail: db_maths@vignan.ac.in

I can't change the direction
of the wind, but I can adjust
my sails to always reach
my destination.

(Jimmy Dean)

