

25MT103: Linear Algebra

Unit 5: Real Inner Product Space

Dr. D Bhanu Prakash

Course Page: dbhanuprakash233.github.io/LA

Assistant Professor,
Department of Mathematics and Statistics.
Contact: db.maths@vignan.ac.in.
dbhanuprakash233.github.io.

Real Inner Product Space - Tutorial

Inner Products and Norms

- ① Compute $\|v\|$ for $v = (3, 4, 12)$ using the standard inner product.
- ② Check if $(1, -1, 0)$ and $(1, 1, 0)$ are orthogonal.
- ③ In \mathbb{R}^3 with the inner product $\langle x, y \rangle = x^T A y$, where

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

compute $\|x\|_A$ for $x = (1, 2, 3)^T$.

- ④ Verify that $\langle f, g \rangle = \int_0^1 f(x)g(x) dx$ defines an inner product on $C[0, 1]$.

Orthogonalization and Decomposition

- ① Apply the Gram–Schmidt process to $(1, 1, 0)$, $(1, 0, 1)$, $(0, 1, 1)$.
- ② Find the QR decomposition of the following matrices.

$$\textcircled{1} \quad A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

$$\textcircled{2} \quad A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

$$\textcircled{3} \quad A = \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}$$

- ③ Compute the singular value decomposition (SVD) of the following matrices.

$$\textcircled{1} \quad A = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}.$$

$$\textcircled{2} \quad A = \begin{bmatrix} 3 & 0 \\ 4 & 0 \end{bmatrix}.$$

Orthogonalization and Decomposition

- ① Use QR decomposition to solve the least-squares problem $Ax = b$ where

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}.$$

- ② Find a rank-1 approximation to

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

using its SVD.

Hints and Key Steps

For deeper practice:

- For Gram–Schmidt, compute projections carefully.
- In QR, note that $R = Q^T A$.
- For SVD, compute $A^T A$ and its eigenvalues.

Thank You!

Dr. D Bhanu Prakash

dbhanuprakash233.github.io

Mail: db_maths@vignan.ac.in

I can't change the direction
of the wind, but I can adjust
my sails to always reach
my destination.

(Jimmy Dean)

